Proceedings International Mathematica Symposium 2005
5-8 August 2005, Perth, Australia
URL: http://internationalmathematicasymposium.org/IMS2005/

Biomedical Image Analysis

Design of Algorithms with Mathematica

Prof. Bart M. ter Haar Romeny, PhD
Eindhoven University of Technology
Eindhoven, the Netherlands
Email: B.M.terHaarRomeny@tue.nl

Introduction

Medical images are the primary source for diagnosis today. A wide variety of modalities (types of imaging) exist, each with a
specific application domain. Plain X-ray, diagnostic ultrasound, tomographic (‘slicing’) modalities such as Computed Tomog-

raphy (CT), Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), and the imaging of nuclear

uptakes are amongst the most popular.

Images are hardly made on film anymore. The majority of modern hospitals have afully digital department. Images are made
in huge quantities. A typical hospital with several hundreds of beds may take several hundred thousands of images per year.

Images are stored in digital archives (called ‘Picture Archive and Communication Systems, PACS'), typically of Terabyte
size, and are available on diagnostic workstations in the so-called radiological ‘reading room’, where the diagnosis is made by

the radiologist.

Medical image analysis comes to assist in this process by means of modern computer vision techniques. The applications are
modules in the diagnostic workstation, and can serve of a wide variety of clinical tasks: 3D volume imaging, quantitative
analysis of anatomical parameters (vessel width, pharmacon uptake, blood velocities, etc.), computer-aided diagnosis (pattern
recognition), matching of different modalities, etc. The algorithms are highly dominated by mathematical theory, which
makes Mathematica an excellent tool for the design of such agorithms. E.g. shape, texture and optic flow (motion) detection

need differential geometry techniques, while pattern recognition relies on statistical and linear algebra methods.

The author started a new group in 2001 at the Dept. of Biomedical Engineering of the Eindhoven University of Technology

(TU/e), and selected Mathematica as the primary development base for the design of algorithms. Many student projects (PhD,

M Sc, BSc) have now been brought to completion, with excellent response of the students and researchers.

Biomedical Engineering is the study where essentially the aspect of engineering courses is mixed with medical and biomedi -
cal courses. The acquision of skills in mathematics, programming, statistics, etc. with physiology, anatomy, epidemiology,

etc. isagood basis for the new engineer that will be working in close team cooperation with medical specialists, or in medical

companies. Worldwide thisis a steadily growing relatively young direction.

In Eindhoven 2 Mastertracks can be followed: Biomedical Engineering (more generic techniques, BME) and Medical Engi-
neering (more patient related techniques, ME). In the BME track there are three directions: Biomedical Imaging and Model -
ing, Tissue Engineering & Cardiovascular Mechanics, and Biochemical Engineering.

This keynote gives a glimpse into this large field, with a selection of examples given as Mathematica notebooks. The text
accompanies the powerpoint slides, shown during the keynote lecture at the International Mathematica Symposium 2005 in
Perth, 6-10 August. The slides are available at www.bmi2.bmt.tue.nl/image-analysi s/People/BRomeny/publications/| M S2005/ -
IM S2005K eynote.ppt (MS powerpoint format, 65 MB).

Imaging Modalities

The most important modalities for the application of computer vision analysis applications are X-Ray, CT and MRI. A plain
X-ray_is a projection image of a bundle of X-rays through the patient on a digital high resolution (typically 3500x0 pixels)

www.manaraa.com

detector. It is widely applied for the imaging of bone fractures, vessel anatomy (after injection of aiodine-containing contraft
agent that creates clear shadows by blocking the X-rays) and trauma.

A CT scanner make slices of the patient, by rotating an X-ray tube with a banana-shaped detector on the opposite side around
the patient (about 2 revolutions per second). From the measured attenuation profiles the unknown pixels of the patient’s ‘ slice’
can be calculated. Typical resolution is 512°. Today the advent of multi-slice CT scanners, with 4 to even 64 rows of detec-
tors, has revolutionized the field. A full high resolution lung scan of over 2000 slices can be made within a single breathhold.
MRI works with a strong magnetic field. The patient is placed in along static (most often superconducting) magnet, typically
of 1.5 Teda (this is about 30000 times stronger than the earth’s magnetic field). In this field the magnetic dipole moment of
the hydrogen atoms in the patient is directed along the main magnetic field. Extra magnetic coils can create (very short)
excitation pulses, to steer the dipoles in perpendicular directions. During the relaxation of the atoms to their equilibrium
positions, they lose their energy as radio photons, which are measured by sensitive antennas around the patient. MRI isalso a
tomographic (slice-forming) technique. The electronic steering of the dipoles is very versatile, many types of images can be
made, e.g. techniques exist for blood flow measurement, spectroscopic analysis of different molecules, functional activity of
the brain, local body temperature, etc.

3D Volume Imaging

The stack of 2D tomographic images (typically with 1 mm resolution in-plane, 1.5-2 mm between planes) gives the full 3D
information. These voxels (volume pixels) are used in 3D volume rendering systems, which are now widely available as
commercia systems. The images are generated (often on the fly, real-time) by calculating the rays, emanating from a virtua
light source, reflected on the patient’s structure of interest, towards a virtual observer position. Modern graphics cards (GPU’
s, Graphical Processing Units) are now well programmable, and are becoming popular for this purpose.

The 3D imaging is only possible when the objects of interest can be clearly defined. This is done by a process called
‘segmentation’. E.g. in order to only visualize the blood vessels, al other structures have to made transparent, which should
be programmed in the computer with computer vision techniques.

Volume visualization is now a mature field. New recent techniques include ‘virtual endoscopy’, where the camera virtually
‘flies through’ the stack of 2D CT dlices of air-filled intestines of the patient to search for possible polyps, the pre-stage of
colon cancer. Diffusion Tensor Imaging is the MRI technique where the Brownian motion of water is measured. This motion,
normally with 3D Gaussian distribution, becomes ellipsoidal when restricted by a tubular structure, such as a nerve fibre of
muscle cell. The longest Eigenvector of the diffusion tensor, measured in every voxel, gives the primary direction of the fibre.
Thisis an example of the advent of complex valued imaging (in this case a 3x 3 tensor per voxel).

Diagnostic Workstations

Every major vendor, like Philips, Siemens, GE, Toshiba, etc. has a line of diagnostic workstations. These electronic light-
boxes have completely replaced the conventional lightbox, and typically carry awide range of applications for the radiol ogist
and the surgeon. Often used viewing functions are the cine-loop view of stacks of images, 2D dlicing in many different
directions other then in the original acquisition direction, and 3D volume visualization. The format for medical images is
DICOM, now universally adopted. This is a complex format, with hundreds of descriptors of the image, the patient’s demo-
graphic data, the acquisition technique, security checks, compression etc. Mathematica has now full reading and writing
capability of DICOM files on board.

Such workstations typically offer a wide range of applications. Dedicated packages are offered for 3D volume visualization,
cardiac analysis, virtual endoscopy, computer-aided diagnosis (see next section), peripheral vessel analysis, functional MRI,
multi-modality image registration, etc.

The 3D volume visualization and the interactive manipulation of these visualizations can also be performed on modern
Graphical Processing Units (GPU’s, game-cards)), which are nowadays 20-30 times more powerful then state-of-the-art CPU’
S. See e.g. the new start-up company 3mensio (Www.3mensi0.com).

Computer-aided Diagnosis
The overwhelming amount of images, and the many quantitative questions about the images, call for computer-assisted

analysis. Medical image analysis is an active research field, with many dedicated large conferences (see e.g. MICCAI,
WWW.miccai.org).

www.manaraa.com

Computer-aided diagnosis is mainly targeting the major diseases, as there is the larger societal gain and market. The prim
areas of interest are digital mammography (finding tumors, microcalcifications and masses in breast photographs), lung
screening (finding lung tumors (often seen as ‘nodules’), vessel occlusions, sarcoidosis), cardiac analysis (finding stenosis of
the coronary arteries, infarct areas, cardiac output; heart diseases kill most people in the Western world) and colon cancer
(finding polyps).

The methods used span all areas of mathematics and statistics. Any computer vision area has applications in CAD, like shape
analysis with differential geometrical methods, shape variation and segmentation with linear algebra methods, texture analysis
and pattern recognition with statistical cluster analysis methods, etc.

The goal of the designer is to create a user-friendly, effective and validated method for medical specialists to be used in daily
clinical practice. Thereis astrong collaboration between the medical imaging industry and university research centers.

Image Analysis with Mathematica at TU/e

The advantages of Mathematica for the design of new algorithms are evident. The integration of full symbolic functionality
with fast numerical capability is unique. Images are big data, and since version 4 these are easily handled. Really big images,
of several hundreds of megabytes, should be processed by dedicated lower-level or even hardware supported systems.
Mathematica’s strong point liesin the design phase.

Students easily adopt the functional programming style. At Eindhoven, we give regular small 1-day courses, when a new
cohort of students enters a new course or program. Reports of internships are directly written as interactive Mathematica
notebook, giving automatically documented code to the teacher. The interpreter mode invites to ‘play with mathematics’, an
essential skill for mastering computer vision techniques. See for a range of examples the notebooks available at
www.bmi2.bmt.tue.nl/image-analysi s’/Education/index.html.

The code resembles the theory in the textbooks and literature. We have encountered quite a number of examples where
students implemented a paper in afew daysin Mathematica, just by entering the formulas from the paper.

At TU/e we have a strong emphasis on design-centered learning. Mathematica fits excellent in this endeavor. E.g. in the
second year, students get the task to analyze microscopy images from blood cells, to find the cancer cells. They do this in
Mathematica, which is their first encounter with the program. They brainstorm to develop their own techniques, recognizing
cells by their shape (‘what is shape' ?), size, number, color etc. Ten groups of 8 students each work for 8 weeks on the prob-
lem, and present their results in a common seminar, which is always an exciting and competitive event. This course is given
high ranks by the students.

At TU/e every student receives a 50% sponsored high-end laptop (we have now over 10.000 in total on the TU/e campus).
The campus premium license for Mathematica allows full use for students and staff alike.

We are developing a Mathematica-based library of advanced, multi-scale, computer vision algorithms, called MathVision-
Tools[2]. Weinvite interested laboratories for a possible collaboration.

Mathematica Kernel Server

At TU/e we have installed two dedicated remote Mathematica kernel servers. The first oneis a cluster of high-end Linux PC’
s, 2.8 GHz, 2 GB RAM. See mathl.bmt.tue.nl. The second one is a Tyan-motherboard TX46 based 64-bit Linux Mathematica
server with 4 AMD Opteron 848 CPU’s of 3.2 GHz and 32 GB DDR 400 MHz ECC RAM (16 x 2048 MB), 8MB per CPU,
al fully addressable from any CPU (for details see www.tyan.com/products/html/barebone.html.

Both systems are very popular. It enables especially BME students with older Iaptops to run powerful remote kernels, while
the Mathematica frontend runs on a modest computer. The 32GB memory server is highly popular for large number-crunch-
ing tasks with PhD students. We fully exploit the use of Paralel Mathematica. Both systems can also be accessed from home
by a secure VPN connection.

Biomimicking: Learning from Visual Perception Mechanisms
Computer-aided diagnosis aims to assist in finding pathologies. This is by far not an easy task. There exist hundreds of
specific theories and applications, and the quest is for generic, robust techniques.

The human visual system has an amazing capability with respect to instantly recognizing (deviating) target structures. It is of
substantial interest to study modern neurophysiological findings, in order to mimic these in a computer implementation. The

www.manaraa.com

author has chosen this as one of the lead focus areas of research. See the textbook (written in Mathematica) “ Front-EQld
Vision and Multi-Scale Image Analysis’ [1].

A key design feature seems to be the measurement of the images at a wide range of scales. This is aready clear from the
structure of the retina, which is designed to do exactly this. The stack of images at different scales (‘blurring’ levels) creates a
3D volume, which is known as a ‘scale-space’. Image structure at a larger scale is more ‘important’ then fine structure, and
with further blurring image structure gradually gets lost. When e.g. the paths of singular points (maxima, minima, saddle
points) are followed over scale, we observe many annihilations (sometimes also creations). These so-called toppoints can be
ordered into a hierarchical tree structure, which give a natural decomposition of a complex scene. We currently have many
projects pursuing thisimportant ‘ deep structure’ of images.

Another important realization is that the primary visual cortex (in the back of our head) seems to contains many cells that take
high order derivatives of the incoming retinal images, at least up to fourth order. Modeling this leads to a wide spectrum of
differential geometric entities, called ‘features’. They should be invariant to different types of geometric transformations, so
are also called ‘invariants' . Examples of how these may be constructed with Mathematica are given in Example #2.
Interestingly, when the process of blurring is mathematically known (isotropic blurring is governed by the linear diffusion
equation, alinear second order PDE), the process of deblurring (which is well known to be ill-posed) can be approximated by
inverting the process. A ‘scale-space’ approach to the deblurring of Gaussian blur is discussed in Example #3. A main
strength of Mathematica becomes clear: the strong integration of symbolic and numerical capabilities with pattern matching
allows the calculation of complex analytical results, and replacing the derivatives in the large polynomial expressions with
numerical implementations of convolutions with gaussian derivative kernels.

Conclusion

For the design of complex mathematical algorithms for modern computer vision techniques Mathematica is ideal. We found
high acceptance and learning rates of students at all levels, and we have accomplished a complete integration of Mathematica
in our image analysis research. For an overview of the projects carried out, past and present, see the BMIA website at
www.bmi2.bmt.tue.nl/image-analysis. Most notebooks as are available as Mathematica documents and as PDF files. The
current development of Mathematica into a strong support of 64 bit architectures, fast numerical capabilities and more
efficient handling of huge datasets is warmly welcomed. It justifies our strategy that we have chosen the right environment to
have invested in.

Acknowledgement

The real work is done by the BME students. See some fruits of their labor at www.bmi2.bmt.tue.nl/image-
analysis/index.html.

Markus van Almsick is a valuable and ever inspiring source of Mathematica knowledge and enthusiasm.
References
[1] B. M. ter Haar Romeny, Front-End Vision & Multi-Scale Image Analysis, Dordrecht, the Netherlands: Kluwer Academic

Publishers, 2003. URL: library.wolfram.com/infocenter/Books/5514.

[2] B. M. ter Haar Romeny and M. A. van Almsick, “MathVisionTools,” Wolfram Technology Conference 2004, Champaign.
URL: library.wolfram.com/infocenter/Conferences/5383.

Appendix: Example Notebooks

Initialization
= OF f [General ::"spell1"7;

O f [General ::spellq;
The Java-based function GetURL reads data from the internet.

www.manaraa.com

in[13]:= Needs[" JLi nk™ "];
Get URL[url _String, opts__ ?0ptionQ :=
JavaBl ock|
Modul e[{u, stream nunRead, outFile, buf},

Instal l Javal];

u = JavaNew "java. net.URL", url];

(* This is where the error will showup if the URL is not valid.
A Java exception will be thrown during openStream which
causes the nmethod to return $Fail ed.

*)
stream = u@penStreani];
| f[stream === $Fail ed, Return[$Failed]];

buf = JavaNew["[B", 5000]; (* 5000 is an arbitrary buffer size *)
out Fil e = OQpenTenpor ar y[DOSText For mat - >Fal se, Char act er Encodi ng->{}];
Whi | e[(nunmRead = stream@ead[buf]) > O,
WiteString[outFile, FronCharacterCode[lf[# < 0, # + 256, #]&
Take[JavaOhj ect ToExpr essi on[buf], numRead]]]
1
stream@l ose[];
Cl ose[out Fi | €] (* Cose returns the filenane *)]];

Unprotect[Get];
Get[s_String] :=
Modul e[{t enpFi |l e, res},
tempFile = Get URL[s];
[f[tempFile =!I = $Fail ed,
res = CGet[tenpFile];
Del eteFil e[tenpFile];

res,
(* else *)
$Fail ed

]
] /; StringMatch s, "http://*"]
Protect[Get];

Not ebookOpenURL[url _String] := NotebookQpen[Get URL[url]]

Read the package with the definitions for the Gaussian derivatives from the internet.

Functionsfrom the Book “Front-End Vision & Multi-Scale Image Analysis’

o= Get [Get URL["http://www bmi 2. bnt . tue. nl /i mage- anal ysi s/ Peopl e/ BRomeny/ FEV/ -
FEV. nf']]

FEV package version 2.0, for Mathematica 5.2

FEV package version 2.0, for Mathematica 5.1

Example 1: Image Operations are Fast

www.manaraa.com

Read an Image from the Net: 6

inol=i mageFile = Get URL["http://ww. bm 2. bnt . tue. nl /i nage- anal ysi s/ Peopl e/ -
BRoreny/ FEV/ | mages/ nr 256. gi f"] ;
im= Inmport[imageFile, "G F"'] [1, 11;
Del eteFi |l e[i mageFil e];
pl=Li stDensityPlot[in;

_ ALY (ALY
The Gradient of an Image (—) +(—]
X ay
Derivatives of discrete images can be calculated in a robust way by convolution with Gaussian derivative kernels. The
function gD implements this convolution by means of ListConvolve (see the package FEV.m in the initialization).

Inf24]:= ? gD

gD[i m nx, ny, o, options] cal cul ates the Caussian derivative of a 2D i mage

by spatial convolution. It is optimzed for speed by 1D convol utions
per dinension. The inmage is considered cyclic in each direction

im= 2D input image [List]

nx = order of differentiation to x [Integer]

ny order of differentiation to y [Integer]

o = scale [in pixels]

options = <optional >kernel Sanpl eRange: range of kerne

sanpled in nultiples of o. Default: kernel Sanpl eRange->{-6, 6}

This shows the gradient (edge magnitude):

In(25]= o = 1;

Li st Densi t yPl ot [\/gD[im 1, 0, 01®+gD[im 0, 1, o1*];

www.manaraa.com

Zerocrossings of the Laplacian Lyy + Lyy

The maximum value of the first order edges is attained at the zerocrossings of the second derivative of the image. The proper
second order derivative is the second order directional derivative in the gradient direction (see example 2). The Laplacian
Lu + Lyy isagood and often used approximation, and it is easy to calculate.

7= o = 1;
| aplacian =gD[im 2, 0, o] +gD[im 0, 2, ol;
Li st Densi tyPl ot [l apl aci an];

In30}:= cont our s = Li st Cont our Pl ot [| apl aci an, Contours -» {0}, Contour Styl e » Red];

www.manaraa.com

Magnify the image to study the contours and their underlying greyvalues. Play with different scales o.

Example 2: The Differential Structure of Images

Thisis an excerpt of text from the Mathematica textbook “Front-End Vision and Multi-Scale Image Analysis’ by the author
(1.

Initialization
Usetheinitialization of example 1.
Image Structure
The structure is described by the local multi-scale derivatives of the image.
in@E2=i mMgFile = GetURL["http://wwv. bm 2. bnt . tue. nl/image-anal ysi s/ Peopl e/ -
BRorreny/ FEV/ | mages/ Spi r al CTAbdonen. j pg"];
imge = Inmport[ingFile,"JPEG'];

DeleteFile[ingFile];
Show{ i nage] ;

www.manaraa.com

An example of a need for segmentation: 3D rendering of a spiral CT acquisition of the abdomen of a patient with Leriche's
syndrome.
We will use thetools of differential geometry.

oLy (oL
(_) + (—) agood edge detector?
X ay

ALV L oL oL &L (OL)\ 8PL
And(—) — -2—— +() —— agood corner detector?
ay) 0x2 dx 0y Oxoy ay?

X

How do we come to such formulas?
We want to detect features invariant to coordinate transformations, e.g. trandations, rotations.

2

AL\ (oL
()+(W) IS nvariant.

oL . . .
——Isnot invariant, —
X ox

Isophotes and Flowlines

in@el=1 ngFil e = Get URL["http://wwv bm 2. bnt.tue. nl/inage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ | mages/ nr 128. gi f"] ;
im= lnport[inmgFile,"dF"'][1, 11;
Del eteFil e[ingFile];

in391= Bl ock [{$Di spl ayFunction =1dentity, dp, cp},
dp = Li st DensityPl ot [gD[im 0, 0, #]] &/e {1, 2, 3, 4};
cp = Li st Cont our Pl ot [gD[i m O, 0, #],
Contour Styl e - Li st /eHue /@ (. 1 Range[10])] &/e {1, 2, 3, 4};
pa = MapThr ead [Show, {dp, cp}]1]; Show[G aphi csArray[pa], | mageSi ze » 5007;

www.manaraa.com

10

1 (X =) %+ (y - py)?
o= bl ob[X_, y_, ux_, my_, D= Exp[- :
nf40)= bl oblx_, y_, pux_, my_, o]i=—— Exp| >]

bl obs[x_, y_]:=blob[x, y, 10, 10, 4] +.7bl ob[x, y, 15, 20, 4] +0.8blob[x, y, 22, 8, 4];
Bl ock [{$Di spl ayFunction=1dentity}, pl =Pl ot3D[bl obs[x, y] -.00008,
{x, 0, 30}, {y, 0, 30}, PlotPoints- 30, Mesh - Fal se, Shadi ng -» True];
c = Cont our Pl ot [bl obs[x, y], {x, O, 30}, {y, 0, 30}, Pl otPoi nts- 30, Contour Shadi ng- Fal sel;
c3d = Graphi ¢cs3D[Gr aphi cs[c][[1]] /. Line[pts_] = (val = Appl y[bl obs, First[pts]];
Li ne[Map[Append[#, val] & pts]])1];
Show[pl, c3d, ViewPoint » {1.393, 2.502, 1.114}, |mageSi ze-» 250];

Isophote on a 2D ‘landscape’ image of three Gaussian blobs, depicted as heightlines. The height is determined by the
intensity.

Isophotes in 3D are surfaces (the 3D OpenGL viewer for Mathematica by Jens-Peer Kuska can be downloaded from
phong.informatik.uni-leipzig.de/~kuska/mathgl 3dv3):

Inf44]:= Get [" Mat hAL3d™ OpenGLVi ewer ""]; i sos =
X2 y2 22
H 3 sz = _ _ _ .
Conpi | e[{}, 10° Tabl e[Exp| 58 18], {z, -10, 10}, {y, -10, 10}, {x, -10, 10}]];

MVLi st Cont our Pl ot 3D[i sos[], Contours -» {.1, 1, 10}, I mageSi ze » 1501;

Isophotes in 3D are surfaces. Shown are the isophotes connecting all voxels with the values 0.1, 1, 10 and 100 in the discrete
dataset of two neighboring 3D Gaussian blobs.

Directional Derivatives

The directional first order derivative in the direction v is given by v {% a_y}

www.manaraa.com

6= ngFi | @ = Get URL["http://wmv. bmi 2. bnt . tue. nl /i mage- anal ysi s/ Peopl e/ - 11
BRoreny/ FEV/ | mages/ m pl47.gif"];
im= lnport[inmgFile,"AF"'][1, 11;
Del eteFil e[ingFile];

m4e}= northeast [im, o_]:={-V2, -v2}. {gD[im 1, 0, o], gD[im O, 1, o]};

southsout hwest [im, o_]:={+v3 /2, 1/2}. (gD[im 1, 0, o], gD[im O, 1, o]};
Di spl ayToget her Array [Li st DensityPl ot /e
{im northeast [im 1], southsouthwest [im 1]}, | mageSi ze » 3007;

Directional derivatives. Image from the Eurorad database (www.eurorad.org), case 147.

injs21:= Tabl e [Li st Densi tyPl ot [{Cos[¢], Sin[¢]}. {gD[im 1, O, 1], gD[im O, 1, 11}1,
{¢, 0, 27, 7m/8}];

First Order Gauge Coordinates

We change from extrinsic geometry to intrinsic geometry.

oL dL
We fix in each point separately our local coordinate frame: the gradient vector w = (— —); the perpendicular direction is

ox' 0y
v_(o 1)W_(a|_ 0L)
“{-10) " "oy’ ax/)

inj53:= Cont our Pl ot [x2 +y2, {y, 2, 4.5},
{x, 2, 4.5}, Contours -» Range[2, 100, 4], Epilog~

www.manaraa.com

{Poi nt Si ze[. 02], Point [{3, 3}], Arrow[{3, 3}, {3+.5+2, 3-.52}], 12

Arrow[(3, 3}, {3+.5v2, 3+.5+2}], Text ["0", (3.8, 2.2}],
Text ["W', {3.8, 3.8}]}, Frane - Fal se, | mageSi ze » 100];

Local first order gauge coordinates {¥, W}. The unit vector ¥ is everywhere tangentia to the isophote (line of constant inten-
sity), the unit vector W is everywhere perpendicul ar to the isophote and points in the direction of the gradient vector.

This set of local directionsis called agauge, the new frame forms the gauge coor dinates.

We want to take derivatives with respect to the gauge coordinates.

oL
Any derivative expressed in gauge coordinates is an orthogonal invariant. E.g. it is clear that T is the derivative in the
gradient direction, and thisisjust the gradient itself, an invariant.
oL
And v = 0, as there is no change in the luminance as we move tangentially along the isophote, and we have chosen this

direction by definition.
We can only calculate derivativesto x and y. So we need to go from {v, w} to {X, Vy}.
In Mathematica: The frame vectors W and ¥ are defined as

Lx, L
In[54]:= W = ﬁ; vV = (

4/ Lx2 + Ly?

0 0 0 0
The directional differential operatorsv.(—, —) andw.(—, —) are defined as:
X 0y ox oy

~

0 1
1 o)

Inssl:= V. {Ox#, Oy#} &
W. {0x#, Oy#} &

The notation (. . . #) &isa‘purefunction’ on the argument #:
7= (#2 + #°) &[22
ous7= 222 + 22°

Higher order derivatives are constructed through nesting multiple first order derivatives, as many as needed. The total transfor-
mation routine is now:

ins8:= Unpr ot ect [gauge2D]; d ear [f, L, Lx, Ly, gauge2Dj;

gauge2D[f _, nv_, nw_] : = Modul e[{Lx, Ly, v, w},
{Lx, Ly}

Ws —m8M V={{0, 1}, {—1, 0}}\/\/;
4/ Lx2 + Ly?
Sinplify[

Nest [(v. {0x#, Oy#} &), Nest [(w. {ox#, oy#} &), f, nw], nv] /.
{Lx > D[f, x], Ly »D[f, y1}1];

www.manaraa.com

where f isasymbolic function of x and y, and n,, and n, are the orders of differentiation with respect to w resp v. Here |sl%n
oL
example of its output: the gradient aw :
inf60]:= Lw = gauge2D[L[x, y1, 0, 2]
PLO2 [x, y] +2LOY [x, y] LA [x, y] LAY [x, y]
1PLEO 1, y) /(LOY X, y1* e L3O 1x, v

out[60]= (L(O'“ X, Y

L% x, y

Using pattern matching with the function shortnotation (see FEV.m) we get more readable output:

ine1]:= Lw = gauge2D[L[x, y], 0, 1] // shortnotation

Out[61])//DisplayForm=

ine2:= Lww = gauge2D[L[X, y], O, 2] // shortnotati on

Out[62])//DisplayForm=
L2 Lux + 2 Ly Luy Ly + L2 Lyy
L+ L3

ine3]:= Lv = gauge2D[L[x, y], 1, 0] // shortnotation

Out[63]//DisplayForm=
0

in4l= Lvv = gauge2D[L[X, y], 2, 0] // shortnotation

Out[64]//DisplayForm=
-2 Ly Lxy Ly + Lxx L§ +L2 Ly
L + L3

This calculates the Laplacian in gauge coordinates, Ly + Ly (What do you expect?):

in[es]:= gauge2D[L[X, y], O, 2] +gauge2D[L[Xx, y], 2, 0] // shortnotation

Out[65]//DisplayForm=
Lxx + Lyy

The next figure shows the {©, W} gauge framein every pixel of asimple 322 image with 3 blobs:

1 X - ux)? - 2
niesl= bl ob[X_, y_, ux_, uy , o]:= Exp|[- (X -u)2+2(y Ky) I
(e}

blobs[x_, y 1:=
bl ob[x, y, 10, 10, 4] +.7blob[x, y, 15, 20, 4] +0.8blob[x, y, 22, 8, 47;
i m=Tabl e[bl obs [x, y1, {y, 30}, {x, 30}1;
Bl ock [{$Di spl ayFunction =Identity, gradient, norm o, frane},
norms= (#/Sqrt [#. #]) &
o=1; gradient = Map[norm
Transpose[{gD[im 1, O, o], gD[im O, 1, o]}, {3, 2, 1}1, {2}1;

www.manaraa.com

frame = Graphics[{Wiite, Arrow[#2 -.5, #2-.5+#1], Red,
Arrow[#2 - .5, #2 - .5+ {(#1[[2]1], -#1[[111}]1}] &
ar = Mapl ndexed [frame, gradient /2, {2}];
| p=_ListDensityPl ot [gD[im 0, 0, o]11;

14

inf701:= Show([{l p, ar}, Frame - True, | nageSi ze » 4107;

30

25

/

20 r

7770177077

/L

~ P

/
/
|
\
\

/NS

/
|
/
. NN

10 +

=

i -~ — T el (\ N\
7 - I

\

~
7
|
\
\
\

\

|
/
7

\ N

AN
VNN NN

‘ //‘//l‘\\\\\\\\

NNV VNV N

A /‘/l“l\l‘llII‘//I‘III‘\\\‘\\\
oL 1

0 5 10 15 20 25 30

Due to the fixing of the gauge by removing the degree of freedom for rotation (that is why L, = 0), we have an important
result: every derivative to v and w is an orthogonal invariant.

The final step is the operational implementation of the gauge derivative operators for discrete images. Thisis simply done by
applying pattern matching:

o first calculate the symbolic expression
e then replace any derivative with respect to x and y by the numerical derivative gD[im,ny,ny,o]
e and then insert the pixeldata in the resulting polynomial function;

asfollows:

in[71:= Unpr ot ect [gauge2DN]; Cl ear [gauge2DN];
gauge2DN[im , nv_, nw_, o_]:=Mdul e[{inD},
gauge2D[L[x, Y1, nv, nw] /.
Derivative[nx_, ny_1[L_1[x_, y_]1-9D[inD, nx, ny, o] /. inD>im];

This writes our numerical code automatically. Here is the implementation for L,,. If the image is not defined, we get the
formula returned:

inf73l= Gl ear [im o]; gauge2DN[im 2, 0, 2]

www.manaraa.com

our3= (gD[im 0, 2, 2] gD[im 1, 0, 2]%- 15
2gD[(im 0, 1, 27 gD[im 1, 0, 21 gD[im 1, 1, 2] +
gD[im 0, 1, 212gD[im 2, 0, 2])/(gD[im 0, 1, 2]2+gD[im 1, 0, 2]2?)

If theimageis available, the invariant property is calculated in each pixel:
inf7a=i ngFi l e = Get URL["http://wwv. bm 2. bnt . tue. nl/inage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ | mages/ t horax02.gi f"];

im= lnport[inmgFile,"AF"'][1, 11;
Del eteFil e[ingFile];

in771:= Di spl ayToget her Array [Li st Densi tyPl ot /@

{im -gauge2DN[im O, 1, 1], -gauge2DN[im 2, 0, 41}, | mageSi ze » 4007;
-

The gradient L,, (middle) and L.y, the second order directional derivative in the direction tangential to the isophote (right) for
a256° X-thorax image at asmall scale of 0.5 pixels. Note the shadow of the coinsiin the pocket of his shirt in the lower right.

|
N
[~

Gauge Coordinate Invariants: Examples

Ridge detection
L. isagood ridge detector, since at ridges the curvature of isophotesis large.
In[78]:=
) 1 _
fIx_, y_1:= [SI n[xj + 3 Si n[3x]) (1+.1y);

Di spl ayToget her Array [Pl ot 3D[f [X, Y1, {X, 0, =}, {y, O, =}1,
Contour Pl ot [f [x, Y1, {X, O, =}, {y, O, =}, PlotPoints -50], | mageSi ze » 3707;

MY

I sophotes are much more curved at the top of ridges and valleys then along the slopes of it. Left: a dightly sloping artificial
intensity landscape with two ridges and avalley, at right the contours as i sophotes.
i i i and calculate L, scaleo = 3.

www.manaraa.com

nzok=i ngFi | e = Get URL["http://wamv. bmi 2. bnt . tue. nl /i mage- anal ysi s/ Peopl e/ - 16
BRoreny/ FEV/ | mages/ hands. gi f"];
im= lnport[inmgFile,"AF"'][1, 11;
Del eteFil e[ingFile];

ing2= Lvv = gauge2DN[i m 2, 0, 3];
Di spl ayToget her Array [Li st DensityPl ot /@ {i m Lvv}, | nageSi ze » 4507;

The invariant feature L,y is a ridge detector. Here applied on an X-ray of two hands at o =3 pixels. Image resolution:
361x 239 pixels.

Noise has structure too. Here are the ridges of uniform white noise:

ing4:= i m= Tabl e[Random[], {128}, {256}]; ListDensityPl ot [gauge2DN[im 2, 0, 4]1;

The invariant feature L,y detects the ridges in white noise here, o = 4 pixels, image resolution: 256 x 128 pixels.

Isophote Curvature in Gauge Coordinates

w ow
Isophote curvature « is defined as the change w" = Vi of the tangent vector w' = vl v in the gradient-gauge coordinate
system. The definition of an isophote is: L(v, w) = Constant, and w = w(v). So, in Mathematica we implicitly differentiate the
equality (==) tov:
ings]:= Cl ear [v, W];
L[v, w[v]] == Const ant;
Oy (L[v, W[v]] == Const ant)

ous7= W [v] L@V v, wiv]] +LE 9 [v, wv]] =0

www.manaraa.com

We know that L, = 0 by definition of the gauge coordinates, so w' = 0, and the curvature xk = w" is found by differmtiat'ir}g
the isophote equation again and solving for w":

injgel= Sol ve[dy v (L[v, w[v]] == Constant) /. w' [v] -0, w' ' [V]]

) LZ0 v, wiv]]
oussl= { {W'[V] - - LOD v, wv]] I}

Sok=- L_W In Cartesian coordinates we recognize the well-known formula:
W

gauge2D[L[x, y], 2, 0]

ngol:= i M=.; x = ;. x//shortnotation
gauge2D[L[x, y], 0, 1]

Out[89]//DisplayForm=
-2 Ly Lyy Ly + Lxx L§ +L2 Lyy
(L2 +L2)°%?

Here is an example of the isophote curvature at arange of scalesfor a sagittal MR image:

inol:=i MgFil e = Get URL["http://wwv. bm 2. bnt . tue. nl/image-anal ysi s/ Peopl e/ -
BRoreny/ FEV/ | mages/ nr 256. gi f"] ;
im= lnport[inmgFile,"dF"'][1, 11;
Del eteFil e[ingFile];

gauge2DN[im 2, 0, o]
gauge2DN[im O, 1, o]

in93)= xpl ot [o_] : = Li st Densi tyPl ot [- , PlotRange » {-5, 5}];

in41:= Di spl ayToget her Array [
{Li st Densi tyPl ot [i m], xpl ot [1], xpl ot [2], xpl ot [3]1}, | nageSi ze » 6007;

The isophote curvature « is a rotationally and trandationally invariant feature. It takes high values at extrema. Image resolu-
tion: 2562 pixels.

Affine Invariant Corner Detection

Corners are defined as locations with high isophote curvature and high intensity gradient. An elegant reasoning for an affine

invariant corner detector was proposed by Blom [Blom19914a], then a PhD student of Koenderink. We reproduce it here using
L

Mathematica. Blom proposed to take the product of isophote curvature —TW— and the gradient L,, raised to some (to be

W
determined) power n:

L
O = - 1 "= kly" = —LnLy" ™
W
An obvious advantage is invariance under a transformation that changes the opening angle of the corner. Such a transforma-

tion isthe affine transformation. An affine transformation is alinear transformation of the coordinate axes:

www.manaraa.com

X' B 1 ab 18
(y‘)_ ad—bc(c d)(x y)+@eh

We omit the trandation term (ef) and study the affine transformation proper. The term is the determinant of the

ad - bc
transformation matrix, and is called the Jacobian. Its purposeis to adjust the amplitude when the area changes.

A good example of the effect of an affine transformation is to study the projection of a square from alarge distance. Rotation
over avertical axis shortens the x-axis. Changing both axes introduces a shear, where the angles between the sides change.

The following example illustrates this by an affine transformation of a square:

in[@s]:= square = {{0, 0}, {1, 0}, {1, 13}, {O, 13}, {0, 0}};

5 2 .
affine:(O 5);afsquare:afflne.#&/@square;

Di spl ayToget her Array [
G aphi cs[Li ne[#], AspectRatio - 1] &/@ {square, afsquare}, | mageSi ze » 200];

. . : . . . (5 2
Figure 6.11. Affine transformation of a square, with transformation matrix (0 5)mapped on each
point.
o Oy 1 ab) , a
The derivatives transform as (): (q)(O0x Oy). We put the affine transformation Az(

dy ad—-bclc
definition of affinely transformed gauge coordinates:

b into th
Cd)mo e

inps= Cl ear [a, b, c, dJ;

gauge2Daffine[f _, nv_, nw_]:=Mdule[{Lx, Ly, v, w, A= (i 2)}
W = tx. by} DV o= (_01 é)w Sinplify][
Lx'2+Ly'?
Nest [v. (m A. {8« #, ay#}) & Nest [w. (m A {B«#, ay#}) & f, nw],
nv] 7. {Lx’ 4%, Ly e%}/. {Lx » oxf, Ly »8,f}]];

The eguation for the affinely distorted coordinates — L, L, "1 now becomes:

injo9:= —gauge2Daf fine[L[x, y], 2, 0] gauge2Daffine[L[x, y], 0, 11" // Sinplify //
shortnotation

Out[99]//DisplayForm=

1
< (a2+¢2) L242 (absc d) Ly Ly+ (b2+d?) L2) 7 (-3+n)

(bc-ad)? (-2 Lx ny I-y + Lxx L§ + L% Lyy)

(bc-ad)?

Very interesting: when n = 3 and for an affine transformation with unity Jacobean (ad — bc = 1, a so-called special transforma-
tion) we are independent of the parameters a, b, ¢ and d! Thisisthe affine invariance condition.

www.manaraa.com

L
So the expression © = L_W Lw® = Lwkw? = 2LyLyyly — LiLy? — Li2Lyy is an affine invariant corner detector. This featyee
W
has the nice property that it is not singular at locations where the gradient vanishes, and through its affine invariance it detects

cornersat all ‘opening angles'.
We show corner detection at two scales on an image:

infLool:=i MgFil e = Get URL["http://wwv. b 2. bnt . tue. nl /i mage- anal ysi s/ Peopl e/ -
BRoreny/ FEV/ | mages/ Ut recht 256. gi f"];
im= Inport[ingFile,"dF"] [1, 17;
Del eteFile[ingFile];

Inf103l:= i m= SubMatri x[im {1, 128}, {128, 128}];
cornerl =gauge2DN[im 2, 0, 1] gauge2DN[im O, 1, 1]
corner 3 = gauge2DN[i m 2, 0, 3] gauge2DN[im 0, 1, 2]%;

infLoel:= Di spl ayToget her Array [
Li st DensityPl ot /@ {i m cornerl, corner3}, | mageSi ze - 5007;

™ |
o |
| . i

Corner detection with the L L2 operator. Left: original image, dimensions 128%. Middle: corner detection at o = 1 pixel;
right: corner detection at o = 3 pixels. Isophote curvature is signed, so note the positive (convex, light) and negative
(concave, 2dark) corners.

Second Order Structure
The second order structure of the intensity landscapeisrich.

In[o71= S = Series[L[X, yI, {X, 0, 2}, {y, O, 2}]1 // Normal // shortnotation

Out[107]//DisplayForm=
X2 Lyy y XZ Lyxy

L0, O] +x Ly + 5 + 5

Y2 (X2 Lyxyy + 2 (X Lyyy + Lyy))

N

+X Lyy +Ly | +

1 1
The second order term is 3 Ly + LyyXy + ELyyyZ. The second order derivatives are the coefficients in the quadratic
polynomial that describes the second order landscape.

infogl=1 ngFile = Get URL["http://www. bm 2. bnt. tue. nl/inage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ | mages/ t horax02.gi f"];
im= lnport[ingFile,"AF"'][1, 11;
Del eteFil e[imgFile];

www.manaraa.com

inz11:= Di spl ayToget her Array [Li st Densi t yPl ot [i m], 20

Li st Pl ot 3D[-gD[im 0, 0, 2], Mesh » Fal se], | mageSi ze » 3207];

nf112p= 1

out{112]= 1
Left: An X-thorax image (resolution 256%) and its ‘intensity landscape’ at o = 2 pixels (right).

The Shape Index

When the principal curvatures «; and «, are considered coordinates in a 2D ‘shape graph’, we see that al different second
order shapes are represented. Each shape is a point on this graph. The following list gives some possibilities:
When both curvatures are zero we have the flat shape.

When both curvatures are positive, we have concave shapes.

When both curvatures are negative, we have convex shapes.

When both curvatures the same sign and magnitude: spherical shapes.
When the curvatures have opposite sign: saddle shapes.

When one curvature is zero: cylindrical shapes.
Koenderink proposed the shape index. It is defined as.

. 2 K1+ K2
shapeindex = —arctan K1 = K.
v/ K1 — K2
. K1 + K2
The expression for can be markedly cleaned up:
K1 — K2
. . K1 + K2 .
ni1gy= Si mplify |] 77 shortnotation
K1 - K2
Out[113]//DisplayForm=
“2 Ly Lyy Ly+Lex L2412 Lyy “2 Ly Lyy Ly+Lex L2+L2 Lyy
- 212,372 + - 2 12,32
(Lx"’Ly) 1 (Lx+Ly) 2
(_ “2 Ly Ly Ly+Lex L2402 Ly) - (_ “2 Ly Lyy Ly+Lax L24L2 Ly)
(3+3)°7 1 (Lg+L3)° 2

so we get for the shape index:

2
shapeindex = ;arctan

www.manaraa.com

The length of the vector is the curvedness: 21

1
curvedness = > VK12 + ko2 .

1
In[114]:= 5 VK12 +x2 // Sinplify //shortnotation

Out[114]//DisplayForm=

1 2Ly Ly v L L3+ L2 Ly |2 [—2LeLy Ly + L L3+ L2 Ly |7
2 (L§+L§)3/2 1+)

- 3/2
(LZ +L3)°)

in[1151:= shapes = Tabl e [Gr aphi csArray [
Tabl e [Pl ot 3D[x1 X% +x2 ¥?, {X, -3, 3}, {y, -3, 3}, PlotRange » {-18, 18},
Pl ot Label - "x1=" <>ToString[x1] <>", x2=" <>ToString[xz],
Aspect Rati o - 1, DisplayFunction-ldentity,
Boxed -» True, Mesh - Fal se],

{KZ, 1! _11 _1]'1 {Kla _1! 1}]]]1

in[1161:= Show[G aphi csArray [
{Gaphics[{Arrow[{0, 0}, {.7, .5}], Red, PointSize[.02], Point[{.7, .5}1},
Pl ot Range » {{-1, 1}, {-1, 1}}, Franme » True, Axes - True,
AxeslLabel -» {"x1", "x2"}, AspectRatio- 1], shapes}], | nageSi ze » 4507];

K2 k1=—1, kp=1 k1=0, kp=1 k1=1, kp=1

0.75

'y
b |
'

0.5

k1=—1, kp=0 k1=0, kp=0 k1=1, kp=0
025 1 2 1 2 1 2

-0.25

]
i
t

-0.5 K1=—1, kp=—1 k1=0, kp=—1 k=1, kp=—1

-0.75

) §
;
L

-075 -05 -025 0 025 05 075 1

Left: Coordinate space of the shape index. Horizontal axis: maximal principal curvature «i, vertical axis: minimal principal
curvature ;. The angle of the position vector determines the shape, the length the curvedness. Right: same as middle set of

figure 6.22.

Third Order Image Structure: T-junction Detection

mpa7=i ngFile = Get URL["http://ww. bm 2. bnt . tue. nl /i nage- anal ysi s/ Peopl e/ -
BRoneny/ FEV/ | mages/ bl ankcheque. j pg"];
im= Inmport[ingFile,"JPEG'];
Del eteFile[ingFile];

www.manaraa.com

22

in[1201:= Show[i m | mageSi ze » 2107;

The painting ‘the blank cheque’ by the famous Belgian surrealist painter René Magritte (1898-1967).

inL2a=i mgFile = Get URL["http://ww. bm 2. bnt . tue. nl/image-anal ysi s/ Peopl e/ -
BRoreny/ FEV/ | mages/ bl ocks. gi f"];
bl ocks = Inport[inmgFile,"d F'] [1, 17;
Del eteFil e[inmgFile];

inf124]:= Li st Densi t yPl ot [bl ocks,
Epilog- (circles = {Crcle[{221, 178}, 13], Crcle[{157, 169}, 13],
Circle[{90, 155}, 13], Circle[{148, 56}, 13],
Crcle[{194, 77}, 13], Circle[{253, 84}, 13]}), | mageSi ze » 3007;

T-junctions often emerge at occlusion boundaries. The foreground edge is most likely to be the straight edge of the "T", with
the occluded edge at some angle to it. The circlesindicate some T-junctionsin the image.

www.manaraa.com

Let uszoom in on a T-junction of an observed image: 23

in[12s}= i m=Tabl e[l f [y <64, 0, 1] +I1f [y <x&&y > 63, 2, 11, {y, 128}, {x, 128}1;
Di spl ayToget her Array [Li st Densi tyPl ot [i m], Li st ContourPl ot [gD[im 0, 0, 7],
Cont ours -» 15, Pl ot Range » {-0. 3, 2.8}], | nageSi ze » 280];

The isophote structure (right) of a simple idealized and observed (blurred) T-junction (left) shows that isophotes strongly
bend at T-junctions when we walk through the intensity landscape.

0
It seems to make sense to study ﬁ:

L
We recall that the isophote curvature « is defined as x = — T_ﬂ :
W

In[127]:= ? gauge2D

gauge2D[L[x,y], nv,nw] cal cul ates the Gaussian derivatives of
the function L[X,y] in the gauge coordinates {v,w}. v is the
direction tangential to the isophote, wis the gradient direction.
L{x,y] = 2D i nput function
nv = order of differentiationto v [Integer, >= 0]
nw = order of differentiation to w [Integer, >= 0]
Exanpl e: gauge2D[L[x,y],2,0]//shortnotation

gauge2D[L[x, y1, 2, 0]
In[128]:= K =
gauge2D[L[x, y1, O, 1]

; x//Simplify //shortnotation

Out[128]//DisplayForm=
“2 Ly Lyy Ly + Lyx L2 + LE Lyy
(Lg +L2)%?

0
The derivative of the isophote curvature in the direction of the gradient, 6_\1/<v is quite a complex third order expression. The

formula is derived by calculating the directional derivative of the curvature in the direction of the normalized gradient. We
define the gradient (or nabla: V) operator with a pure function:

inf1209]= grad = {Ox#, Oy#} &

d[L[x,
dxdw = graci-[x. yli .grad[x];

Vgrad[L[x, yl1.grad[L[x, y]]
dxdw /7 Sinplify // shortnotation

www.manaraa.com

Out[131]//DisplayForm= 24

(L +L2)°

(Luxy L§ + L% (=2 LZ, + Lx Luyy — Lux Lyy) =Ly (2 L3, - Lx (Lxxx = 2 Lxyy) + Lxx Lyy) +
LZL2 (-3 L% +8 L2 + Ly (Luxx -~ Lxyy) +4 Lux Lyy -3 L2)) +
L3Ly (6 Lxy (Lxx - Lyy) +Lx (-2 Lyxy + Lyyy)) +
Lx L§ (6 ny (*Lxx+|-yy) + Ly (*Lxxy+|—yyy)))

To avoid singularities at vanishing gradients through the division by (L2 + Lyz)3 = L,® we use as our T-junction detector
ok 6.

T= :
ow "

In[132= tj unction = dxdw (grad[L[x, y]1].grad[L[x, y11)3;
tjunction // shortnotation

Out[133]//DisplayForm=
L3 Luyy + Ly (=2 L3 + Lyxy Ly — Lux Lyy) +LE Ly (6 Lux Lxy + Luxx Ly = Luyy Ly = 6 Lyy Lyy) +
Ly L3 (=6 Lyx Lxy + Luxx Ly =2 Lyyy Ly + 6 Ly Lyy) — Ly (213, +2 Lyxy Ly + Lux Lyy — Ly Lyyy) +
LZLZ (-3 L& +8 L%, ~ Luxy Ly + 4 Lyx Lyy -3 L3, + Ly Lyyy)

Finally, we apply the T-junction detector on our blocks at a rather fine scale of o =2 (we plot —tjunction to invert the
contrast):

In[134]= o = 2; Li stDensityPl ot [
tjunction /. Derivative[nx_, ny _1[L]1[X, y] -»gD[inD, nx, ny, o] /.
i m - bl ocks, Epilog->circles, | mageSi ze » 2307;

o5 O ©

©
QQ

Detection of T-junctionsin the image of the blocks. The same circles have been drawn asin the figure above.

Example 3: Deblurring Gaussian Blur

In the scale-space the images gradually blur when we increase the scale.
o . dL ’L L
The diffusion equation T + I governs the process.
A scale-spaceisinfinitely differentiable due to the regularization properties of the observation process.
What happens if we go to negative scales? Due to the continuity we are allowed to construct a Taylor expansion of the

scale-space in any direction, including the negative scale direction:

In[135:= L =. ;
Series[L[x, y, t], {t, 0, 3}]

www.manaraa.com

L% (x, y, 0]t3+0[t]2

ouzel= L[x, y, 01 +L©@ %D (x, y, 0]t + % L©02) [x, y, 0]t2 +%

The derivatives to t are recognized as e.g. L®%V. It is not possible to directly calculate the derivatives to t. We can replace the
derivative of the image to scale with the Laplacian of the image, and that can be computed by application of the Gaussian
derivatives on the image. Higher orders derivativesto t have to be replaced with the repeated L aplacian operator A.

In[137]= A = (Ox, x# + Oy, y#) &

in1381:= A[f [X, Y]]
ouf13g]= (1 +0.1y) (-Sin[{x] -3Sin[3x])
The repeated Laplacian operator is made with the function Nest:
in[139]:= Nest [f, X, 3]
outf1zgl= f [f [f [x]]]
With pattern matching we replace all derivatives of L with respect to t with the nested Laplacian operator A:

in[1401= expr = Normal [Series[L[x, y, t], {t, O, 3}1] /.
LOOM) x, y, 0] Nest[a, L[x, y, 0], n]

ou140)= L[x, y, 0] +t (L(®29 [x, y, 0] +LZ%0 [x, y, 0]) +
1

St2 LM Xy, 01+2L320 x, y, 0] +LE O [x, y, 0]) +

P LOEO x, y, 0] +3LA40 [x, y, 0] +3LE20 (X, y, 0] +LEOO [x, y, 0])

In order to get the formulas better readable for humans, we apply pattern matching again: we change the complex notations of
derivatives into a more compact representation, where a higher order derivative isindicated by alist of dimensional indices:

inL41]:= short [expr_] :=expr /. Derivative[n_, m, | _J[LI[X_, y_, z_]1~
Subscri pt Box [L, Table["Xx", {n}] <>Table["y", {m}] <>Table["z", {1 }1] 7/
D spl ayForm

In[1421:= expr // short

Out[142]//DisplayForm=
1
L[X, ¥y, 0] +t (Lgx +Lyy) + 7t2 (Luxxx + 2 Lxxyy + Lyyyy) +
1
3 t3 (Lxxxxxx + 3 I—xxxxyy +3 I-xxyyyy + I-yyyyyy)

Indeed, high order of spatial derivatives appear. The highest order in this example is 6, because we applied the Laplacian
operator 3 times, which itself is a second order operator. With Mathematica we now have the machinery to make Taylor
expansions to any order, e.g. to 8:

in[143;:= expr = Normal [Series[L[x, vy, t], {t, O, 8}1] /.
L(O‘O’n—) [X, y, O] B d l\bSt [Ay L[X! y' O]! n] // Short

www.manaraa.com

Out[143]//DisplayForm= 26

1
LIX, y, O] +t (Lxx +Lyy) + 7t2 (Luxxx + 2 Lxxyy + Lyyyy) +

1
3 t3 (Lxxxxxx + 3 Lxxxyy + 3 Lxyyyy + Lyyyyyy) +

1 ., 1

24 t (Lxxxxxxxx +4 I—xxxxxxyy +6 I—xxxxyyyy +4 I—xxyyyyyy + I—yyyyyyyy) + 120 to°
(Lxxxxxxxxxx + 9 I—xxxxxxxxyy +10 I—xxxxxxyyyy +10 I—xxxxyyyyyy +5 I—xxyyyyyyyy + I—yyyyyyyyyy) +
1 .6

720 t° (Lxxxxxxxxxxxx + 0 Lxxxxxxxxxxyy +15 Lxxxxxxxxyyyy +20 I—x><><xx><yyyyyy +

1
15 Lxxxyyyyyyyy + 6 Lxxyyyyyyyyyy + Lyyyyyyyyyyyy) + 5040

7
(T (Lxxxxxxxxxxxxx + 7 I—xxxxxxxxxxxxyy +21 I-xxxxxxxxxxyyyy +35 I-xxxxxxxxyyyyyy +

35 LXXXXXXVVYWVYY +21 Lxxxxyyyyyyyyyy 7 LXXYWYYWYYWY + Lyyyyyyyyyyyyyy)) +

1
40320
56 Lxxxxxxxxxxyyyyyy +70 Lxxxxxxxxyyyyyyyy + 56 I—><><x><><><yyyyyyyyyy +

28 Lxxxxyyyyyyyyyyyy +8 Lxxyyyyyyyyyyyyyy + Lyyyyyyyyyyyyyyyy>)

8
(t° (Lxxxxxxxxxxxxxxxx + 8 Lxxxxxxxxxxxxxxyy +28 Lxxxxxxxxxxxxyyyy +

No matter how high the order of differentiation, the derivatives can be calculated using the multiscale Gaussian derivative
operators. So, as a final step, we express the spatia derivatives in the formula above in the Gaussian derivatives, again using
the technique of pattern matching (HoldForm assures we see just the formula for gD[], of which evaluation is ‘hold’; Release-

Hold removes the hold):
In[1441:= corr = expr /. Derivative[n_, m, O][L][X, V¥, a_] » HoldForm[gD[im n, m 17]]

Out[144]//DisplayForm=
1
L[X, ¥y, 0] +t (Lgx +Lyy) + ftz (Luxxx + 2 Lxxyy + Lyyyy) +

1
3 t 8 (Lxxxxxx +3 I-xxxxyy +3 I-xxyyyy + I-yyyyyy) +

1 4 1 5
24 % (Lxxxxxxxx + 4 Lxxxxxxyy +6 I-xxxxyyyy +4 I-xxyyyyyy + I-yyyyyyyy) + 120 t

(Lxxxxxxxxxx + D Lxxxxxxxxyy +10 I-xxxxxxyyyy +10 I-xxxxyyyyyy +5 I—xxyyyyyyyy + I—yyyyyyyyyy) +

1

6
720 t° (Lxxxxxxxxxxxx + 6 Lxxxxxxxxxxyy +15 Lxxxxxxxxyyyy +20 Lxxxxxxyyyyyy +

1
15 Laxxxyyyyyyyy + 6 Laxyyyyyyyyyy + Lyyyyyyyyyyyy) + 5040
7
(t (Lxxxxxxxxxxxxxx +7 Lxxxxxxxxxxxxyy +21 I-xxxxxxxxxxyyyy +35 I-xxxxxxxxyyyyyy +
35 Loooxxyyyyyyyy + 21 Lioooyyyyyyyyyy + 7 Laxyyyyyyyyyyyy + Lyyyyyyyyyyyyyy)) +
1
40320
56 Lxxxxxxxxxxyyyyyy + 70 Lxxxxxxxxyyyyyyyy + 56 Lxxxxxxyyyyyyyyyy +

8
(2 (Lxxxxxxxxxxxxxxxx + 8 Lxxxxxxxxxxxxxxyy +28 I-xxxxxxxxxxxxyyyy +

28 Lxxxxyyyyyyyyyyyy +8 Lxxyyyyyyyyyyyyyy + LYYYYYYYYYYYYYVVY>)

1) _ .
Because we deblur, we take for t = EUZ a negative value, given by the amount of blurring oegimateg W€ €Xxpect we have to

deblur. However, applying Gaussian derivatives on our image increases the inner scale with the scale of the applied operator,

i.e. blurs it alittle necessarily. So, if we calculate our repeated Laplacians say at scale o gperaior = 4, We need to deblur the

et + 02
effect of both blurrings. Expressed in t, the total deblurring ‘distance’ amounts to tgeyyr = estimated > PEAN \We assemble

our commands in a single deblurring command which cal cul ates the amount of correction to be added to an image to deblur it:

inf4s1= deblur[im, oest_, order_, o] :=
Modul e[{ expr},
A=D[#1, {x, 2} +D{ #1, {y, 2}] &
expr = Normal [Series[L[x, vy, t], {t, 0O, order}]]/.

www.manaraa.com

Derivative[O, O, | _J[L_][x_, y_, t_] :>
Nest[aA, L[x, vy, t], I] /. t - -(oest”2+0"2)/2;
Drop[expr,1]/.Derivative[n_,m,O0][L][X,y,t]~

Hol dFornfgD[i mn, m o]]]

and test it, e.g. for first order:

27

inf146l:= i M=.; deblur[im 2, 1, 2]
outi146]= -4 (gD[im 0, 2, 2] +gD[im 2, 0, 2])

It is a well known fact in image processing that subtraction of the Laplacian (times some constant depending on the blur)
sharpens the image. We see here that this is nothing else than the first order result of our deblurring approach using scale-
space theory. For higher order deblurring the formulas get more complicated and higher derivatives are involved:

in[1471:= deblur [im 2, 3, 2]

ou1471= -4 (gD[im 0, 2, 2] +gD[im 2, 0, 2]) +
8 (gD[im O, 4, 2] +2gD[im 2, 2, 2] +gD[im 4, 0, 2]) -

32 (gDlim 0, 6, 2] +3gD(im 2, 4, 2) +3gDlim 4, 2, 2] +gD(im 6, 0, 2])

We generate a test image blurred with =2 pixels and display it both below as in a new window for later easy comparison.
We read an image from the internet:

ina48l=1 ngFil e = Get URL["http://wwv. bm 2. bnt . tue. nl /i nage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ i mages/ nr 128.gi f"];
imge = Inmport[ingFile, "G F"'];
Del eteFil e[inmgFile];
Show| i mage] ;

in[is21= i m=1image[[1, 11]; blur =gDf [im 0, 0, 2];
Li st Densi tyPl ot [bl ur, | nageSi ze » 1287;

www.manaraa.com

28

Figure 19. Input image for deblurring, blurred at o = 2 pixels. Image resolution 1282.
We try adeblurring for orders 4, 8, 16 and 32:

in[1541:= Ti m ng[Do[
corr =deblur [blur, 2, 2", 4] // Rel easeHol d;
Bl ock [{$Di spl ayFunction =Identity},
pl = Li st Densi tyPl ot [bl ur, Pl otLabel - "original"];
p2 =
Li st Densi tyPl ot [bl ur +corr, PlotLabel »"order = " <>ToString[2' 11];
Show[G aphi csArray [{pl, p2}], | mageSi ze » 3307]; ,

{i, 2, 5}1;10I1]]

origina order=4

origina order =8

www.manaraa.com

origina order = 16 29

origina

out[154]= 68. 625 Second

Result of deblurring to 32nd order.

Not bad.

Mathematica is reasonably fast: the deblurring to 32" order involved derivatives up to order 64 (1), in a polynomial contain-
ing 560 calls to the gD derivative function. The 4 calculations above take together about 4.5 minutes for a 128% image on a
500 MHz 128 MB Pentium 111 under Windows 98 (the 32" order case took 3.5 minutes). This counts the occurrences of gD
in the 32" order deblur polynomial, i.e. how many actual convolutions of the image were needed:

in[1551:= durmmy =. ; Lengt h[Posi ti on[debl ur [dumy, 2, 32, 4], gD]]

out[155]= 560

Example 4: Detection of Granular Structures in 3D Macrophages

Initialization
Use theinitialization of example 1.
Read the TIFF file with the 50 slices from the author’ s homepage' s image directory (NB: 12.8 MB):

infesel:=i MgFi l e = Get URL[" http://wwv. bm 2. bnt . tue. nl /i mage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ i mages/ 29- 4-2004-2_raw02.tif"];
im= lnport[inmgFile,"TIFF"];
Del eteFil e[ingFile];

Take from all 50 dices the pixels (in the [[1,1]] element), and take the green channel only of the color RGB images (the other
channels are zero):

www.manaraa.com

infsel= tp =i m{[All, 1, 111; %

Dimensions[inBD=tnp[[All, All, All, 2]1]

ou160)= {50, 512, 512}

{50, 512, 512}
Take a submatrix with the macrophage in each of the 50 images:

in61:= i m = Take[i nBD, Al l, {211, 320}, {286, 417}];
{max, mn} = {Max[im], Mn[im]};
{zdim ydim xdi m} =D nensions[i m]

ou163= {50, 110, 132}

{50, 110, 132}
The z-scaleis multiplied by @ to include the anisotropy of the voxels:

In[164]:= a = 1;

Check the dlices:

inf1651:= Show[Gr aphi csArray [Partition[Li st DensityPl ot [#,
Di spl ayFunction - ldentity, PlotRange -» {mn, max}] &/@im, 711,
Di spl ayFuncti on - $Di spl ayFuncti on, | nageSi ze -» 6007];

www.maharaa.com

31

3D Viewer

inj1e6l:= Get [" Mat hGL3d™ OpenGLVi ewer " " 1;
The OpenGLVi ewer is running.

Li nkQbj ect::1inkd :
Li nkQbj ect [C.\ Docunents and Settings\Al |l Users\Applicat
..L3d\ Bi nari es\ W ndows\ nat hvi ew3d. exe -mat hlink, 158, 6]
is closed; the connection is dead. Mire...

This shows the outline (isosurface of value 100) of the macrophage in 3D in a separate window:

in[1671:= MVQ ear [1;
g = MVLi st Cont our Pl ot 3D[gDn[i m, {0, O, 0}, {1, 1, 1}],
Cont ours -» {100}, LightSources -» {{{1, 0, 1}, R&BColor [.6, .6, .61},
{{1, 0, 1}, RGBColor[.6, .6, .61}, {{0, O, 1}, RGBColor[.6, .6, .6]1}},
Cont our Styl e » {Banana}, Di spl ayFunction-ldentity,
MVReducePol ygons » {0, Autonmatic}];

Li nkQbj ect::linkn :
Argunment Li nkQbj ect [C.\ Docunents and Settings\Al |l Users\ Applicat
..L3d\ Bi nari es\ W ndows\ mat hvi ew3d. exe -nmathlink, 158, 6] in
Li nkWite[Li nkOoject [C.\ Docunents and Settings\Al |l Users\A...
ari es\ Wndows\ mat hvi ew3d. exe -mat hlink, 158, 6], <<1>>]
has an invalid LinkObject nunber; the |ink my be dead. More...

www.manaraa.com

Li nkQbj ect::1inkn :
Argument Li nkQbj ect [C.\ Docunents and Settings\Al | Users\ Applicat
..L3d\ Bi nari es\ W ndows\ nmat hvi ew3d. exe -mathlink, 158, 6] in
Li nkWite[Li nkOhject [C.\ Docunments and Settings\Al|l Users\A...
ari es\ Wndows\ mat hvi ew3d. exe -mathlink, 158, 6], <<1>]
has an invalid LinkObject nunber; the |ink may be dead. More...

32

And thisisthe wireframe:

in[1691:= Wi r ef rame = Show[W r eFr ane [g],
Di spl ayFuncti on -» $Di spl ayFuncti on, | nageSi ze - 550, BoxRatios » {1, 1, 1}];

Blur the 3D data alittle with o = 3 pixelsin the x, y and z dimension:
In[170]:= ? gDn

gbnlim {...,ny,nx}, {..., o0y, ox},0ptio ns] calcul ates the Gaussian

derivative of an N-di nensional inmage by approximated spatia
convolution. It is optim zed for speed by 1D convol uti ons per
di mrension. The inmage is considered cyclic in each direction
Note the order of the dinmensions in the paranmeter |ists.

i m= N-di nensional input inage [List]

nx = order of differentiation to x [Integer, nx = 0]

ox = scale in x-dinmension [in pixels, o > 0]

options = <optional > kernel Sanpl eRange: range of kerne
sanpled in nmnultiples of o. Default: kernel Sanpl eRange->{-6, 6}

Exanpl e: gbn[im {0,0,1}, {2,2,2}] calculates the x-
derivative of a 3D image at an isotropic scale of o,=oy=0x=2.

in[171:= i mbl urred =gbn[i m, {0, 0, 0}, {3, 3, 3}1;

Find the n largest maximain N-dimensions:

in[1721:= nMaxi ma[im, n_]1:=Mdule[{l, d =Depth[im] -1},
p=TineseeTabl e[(Sign[im-Mp[RotateLeft, im {i}]]+1)
(Sign[i m-Map[RotateRight, im {i}1]1+1), {i, O, d-1}1;
| =Length[Position[p, 491];
Take[
Reverse[Uni on[{Extract [i m #], #} &/@Position[p, 49111, If[n<!l, n, 111];

We return the 3D positions of the 12 largest maxima:
In[1731:= MaxXi munposi ti ons = Last [#] & /e nMaxi ma[i mbl urred, 12]

oun7a= {{24, 52, 89}, {23, 51, 89}, {24, 57, 37}, {20, 39, 61},
(18, 64, 70}, (24, 72, 60}, (24, 49, 113}, {21, 23, 44},
(25, 50, 114}, (18, 28, 86}, (22, 28, 37}, {21, 36, 103}

({24, 52, 89}, (23, 51, 89}, (24, 57, 37}, {20, 39, 61},
(18, 64, 70}, {24, 72, 60}, (24, 49, 113}, (21, 23, 44},
(25, 50, 114}, {18, 28, 86), (22, 28, 37}, (21, 36, 103}}

www.manaraa.com

in[1741:= Show[G aphi csArray [33

Partitionf[ListDensityPlot [imI[[First [#]]], Pl otRange » {nmi n, max},
Pl ot Label »"slice " <>ToString[#[[1]1]], Di splayFunction-ldentity,
Epi | og » {Red, PointSi ze[0. 03], Point [Reverse[Drop[#, 1]11]1}] &/@
maxi munposi tions, 6], Di spl ayFuncti on -» $Di spl ayFuncti on,
| mageSi ze -» 600, G aphi csSpacing - -.1117;

dice24 dice23 dice24 dice20 dicel8 dice24

Granulae Shape Detection

We sample the intensity along a star of rays in each granule, starting at the location of its maximum value. We interpolate
with a cubic spline (3rd order) function:

in[1751:= i nt er pol ati on = Li st nterpol ation[i m];

Create a star of rays with each 20 sampling points 1 pixel apart starting from the maximum position {x, y, z} in 7 directions of
6 (tils) and 5 directions of ¢ (slant), in total 35 directions:

In[176]:= 66 =7/ 8; ¢ =2 7/ 5;
raysf[z_, y_, Xx_]:=Mdule[{¢, 6, r}, Tabl e[N][
interpolation[z +r Cos[¢] Cos[e], y+r Sin[¢] Cos[e], x+r Sin[e]]],
{6, -n/2+66, w/2-66, 66}, {¢, 0, 2P -6, 66}, {r, 1, 20}11:

Just to check the result visually, we display the star of sampling rays:

in[178l= star[z_, y_, x_] :=Mdul e[{¢, 6, I},
G aphi cs3D[{Red, Point [{X, ¥, az}], Table[{Weat, Line[{{X, V¥V, az},
N[{X +r Cos[¢] Cos[©], Y +I Sin[¢] Cos[6], az+r Sin[e]}]}], Blue,
Poi nt [N[{Xx +r Cos[¢] Cos[e], Y+r Sin[¢] Cos[e], az+r Sin[6]1}]1]1},
{6, -n/2+66, ©/2-66, 66}, {¢, 0, 27 -6¢, 6¢}, {r, 20, 20}1}11;
stars = Show[Appl y [star, maxi munpositions, 2]1;

www.manaraa.com

34

We sampl e the intensity tracks along the 35 rays outbound from the 8 maxima, and inspect them lined up in asingle figure:

inpgol= OF f [I nt er pol ati ngFuncti on: : "dnval "];

inf181):= Di spl ayToget her Array [Li st Densi t yPl ot [#, Pl ot Range » {m n, nax}] &/e
(tracks = (Flatten[raysee#, 1] & /@ maxi munpositions)), | nmageSi ze » 6007];

in[182]:= Di mensi ons [t racks]

ouf182= {12, 35, 20}

(12, 35, 20}

Here are the tracks per granule:

inf183:= Di spl ayToget her Array [
Mul ti pl eLi st Pl ot [#, Pl ot Range -» {m n, nax}, Synbol Shape - None, Axes - Fal se,
Pl ot Styl e - Hue /@ Range[0, 1, 1/15]] &/@tracks, | nageSi ze » 6007;

The edges are very weak, in a very noisy environment. Therefore we will use the signature function and edge focusing to
detect the location of the largest edge in the track.

Signatures
The signature function is calculated in the Fourier domain to prevent accuracy errors at larger scales.

inp84l= Cl ear [si gnature];
signaturef[track] :=Mdul e[{ss},
ss = Tabl e[gDf 1D[track, 2, E*], {t, O, 2, .06}];
(Rot at eRi ght [#] -#) &/@Si gn[ss]];

www.manaraa.com

Calculate the 20-pixel signatures for 34 levels of scale for all 35 tracks around al 8 maxima with convolution in the Fouggr
domain:

In[186]:= Si gnatures = Map[si gnature, tracks, {2}];
D nensi ons [si gnat ures]

ouf1871= {12, 35, 34, 20}
Display al signature functions with alevel lineat 17:

inf1s:= | evel =17;
Di spl ayToget her Array [
Li st DensityPl ot [#, Epilog - {Red, Line[{{0, level}, {20, level }}1}] &/e#,
| mageSi ze - 600] & /@si gnhat ur es;

Edge Focusing
The function edgefocus takes a signature and a startlevel, and a direction (upgoing edge: dir= 2, downgoing edge: dir = -2).

inf1o0]:= edgef ocus[signature_, startlevel , dir_]:=NMdule[{a, b, c},
out =0. sighature; a=Position[signature[[startlevel 1], dir];
Do[b = Position[signature[[i]], dir];
c =Sel ect [b, (Position[a, #-11 # {} ||
Position[a, #] # {} || Position[a, #+1] # {}) &];

www.manaraa.com

out [[i 1] = Repl acePart [out [[i]], -1, c]; b=c; a=Db,
{i, startlevel -1, 1, -1}7;
Position[First [out], -11[[1, 1111;

36

inp91:= edgel ocati ons = Map [edgef ocus [#, 17, -2] & signatures, {2}]

ouio1}= {{11, 14, 7, 11, 13, 9, 13, 9, 11, 14, 8, 13, 6, 10, 10, 8, 17,
6, 16, 9, 8, 12, 10, 13, 12, 10, 9, 13, 13, 9, 10, 10, 10, 9, 8},

{12, 12, 9, 10, 7, 9, 16, 9, 10, 14, 8, 13, 7, 8, 10, 8, 17, 7, 15,
11, 8, 13, 10, 12, 11, 10, 12, 13, 13, 12, 13, 12, 13, 4, 8},

{9, 13, 8, 8, 7, 7, 14, 6, 13, 9, 7, 15, 9, 11, 10, 7, 9, 9,

12, 12, 11, 9, 11, 11, 8, 6, 7, 6, 5, 6, 6, 9, 5, 4, 5},
{17, 8, 10, 9, 9, 9, 7, 5, 13, 8, 7, 8, 11, 11, 6, 8, 10, 13,
12, 9, 8, 14, 13, 12, 6, 8, 11, 11, 15, 7, 7, 6, 8, 9, 11},

{6, 5, 13, 7, 11, 13, 7, 7, 8, 13, 5, 7, 6, 9, 4, 5, 7, 6, 8, 3, 5 6, 7, 8,
5, 5, 13, 10, 14, 1, 6, 8, 9, 8, 73}, {7, 9, 8, 6, 7, 4, 11, 8, 17, 6, 4, 13,
7, 15, 4, 4, 16, 9, 16, 8, 7, 8, 10, 8, 7, 9, 8, 4, 18, 6, 9, 6, 3, 6, 7},

{r, 1, 1, 8, 5, 5, 11, 4, 10, 5, 6, 7, 7, 7, 14, 7, 7, 13,

12, 10, 8, 8, 10, 10, 7, 9, 10, 5, 5, 5, 8, 8, 5, 6, 7},
{r, 7, 15, 9, 8, 5, 7, 11, 8, 4, 12, 6, 6, 6, 9, 6, 4, 6, 7, 9, 5, 4, 15, 6,

9, 15, 5, 7, 8, 11, 5, 5, 4, 4, 133}, {6, 2, 1, 2, 7, 5, 10, 4, 13, 7, 5, 7,
3, 17, 7, 5, 7, 13, 12, 8, 8, 7, 11, 5, 8, 7, 10, 6, 6, 6, 7, 7, 5, 5, 5},
{6, 8, 9, 4, 5,5, 6, 13, 11, 8, 14, 9, 12, 9, 6, 10, 1, 9, 7,

5, 10, 4, 11, 7, 6, 10, 6, 12, 8, 7, 13, 3, 6, 11, 93},

{12, 8, 7, 8, 10, 7, 5, 8, 8, 10, 7, 4, 6, 10, 8, 13, 3, 6, 7,
10, 5, 3, 6, 12, 12, 5, 2, 3, 13, 15, 10, 3, 3, 7, 4},

{3, 1, 1, 1, 1, 3, 1, 18, 4, 5, 13, 1, 3, 12, 8, 11, 5, 15,
10, 5, 7, 18, 13, 9, 5, 8, 1, 13, 7, 4, 10, 9, 15, 5, 5}}

Let us visualy check the correctness of the detected edges in the noise:

in[192:= Di spl ayToget her Array [Tabl e[Li st DensityPl ot [tracks[[i]],
Epi | og » {Red, Poi ntSi ze[0.04], Mapl ndexed[Poi nt [{#1, #2[[1]]1} -.5] &
edgel ocations[[i]11}], {i, 1, 8}], I mageSi ze » 6007;
In[193]:= I' =.

" | q
pri{z_, y_, x_}]:=

Flatten[Tabl e[N[{x +r Cos[¢] Cos[e], Y +r Sin[¢] Cos[6], az +r Sin[6]}],
{6, -n/2+66, n/2-66, 66}, {9, 0, 27 -6¢, 65¢}]1, 11;

In[195]:= edgepoi nt s3D =
MapThread[(#1 /. r - #2) &, {pr /@ maxi nunposi ti ons, edgel ocations}, 2];

www.manaraa.com

Range [Lengt h[edgepoi nt s3D]]] 37

in196}= Show[Gr aphi cs3D[MapThread [Li st, {Hue /e [:
Lengt h[edgepoi nt s3D]

Map [Poi nt, edgepoi nts3D, {2}1}]]];

Fit Spherical Harmonic Functions to Second Order

In[197]:= or der = 2;
fitfunctions =
Fl atten[Tabl e[Spheri cal Harmoni cY[l, m e, ¢], {I, O, order}, {m -I, |, 13}1]

11 4, |3 / o | 3 o
Out[198]= {zﬁ' 7@ 2 S'n Q)S ——@ ﬁ S|n[e},
; | 15 1 ;
-21i¢ — 10
e 27T8|n[],2e 2 Cos[6] Sin[e],

|5 2 1 15 : 1 5,54 [15 2
— (-1+3Cos[0]°), —7e 5 Cos[e] Sin[o], 7e 5 Sine] }

INEE

INEE

inf1e9l:= fitresults = Chop[ExpToTrig[Fit [#, fitfunctions, {6, ¢}]]] &/@edgepoi nts3D

outitegl= {24. 5375 + 1. 36246 Cos [©] - 0. 346201 Cos [0]?

0.371463 Cos [¢] Sin[©] - 1. 34494 Cos[6] Cos[¢] Sin[o] -

0.998947 Cos [2 ¢] Sin[e]? +0.162299Sin[e] Sin[¢] +

4.52912 Cos[6] Sin[e] Sin[¢] -1.16299Sin[6]2Sin[2¢],
19. 0396 - 1. 70754 Cos [©] + 10. 9077 Cos [6]2 - 0. 516394 Cos [¢] Sin[6] +

6. 48349 Cos [6] Cos [¢] Sin[e] +5.37368 Cos [2 ¢] Sin[e]?

3.1673Sin[6] Sin[¢] -1.76275Cos[6] Sin[e] Sin[¢] +2.59704Sin[e]?>Sin[2¢],
21.8964 + 1. 19997 Cos [6] + 1. 99265 Cos [©]2 + 0. 800959 Cos [¢] Sin[O] +

0. 859479 Cos [6] Cos [¢] Sin[6] +2.82458 Cos [2 ¢] Sin[6]?

1.03126 Sin[e] Sin[¢] +4.91885Cos[6] Sin[e] Sin[¢] -3.62613Sin[6]2Sin[2¢],
21.1501 + 0. 873112 Cos [6] - 2. 52097 Cos [6]2 - 0. 47186 Cos [¢] Sin[O] +

7. 48707 Cos [6] Cos [¢] Sin[6] - 0.323233Cos[2 ¢] Sin[o]?

4.93223Sin[e] Sin[¢] -4.44066 Cos[©] Sin[e] Sin[¢] -4.29129Sin[e]2Sin[2¢],
22.2647.+0.269869 Cos.[0] - 8.27813 Cos [0]2

www.manaraa.com

3.40177 Cos[¢] Sin[6] - 3. 74178 Cos [6] Cos [¢] Sin[&] -
.31886 Cos[2 ¢] Sin[6]% -0.444734Sin[e] Sin[¢] -
.44111 Cos[e] Sin[e] Sin[¢] +0.624648Sin[e]1?>Sin[2¢],
24.3495 - 2. 0098 Cos [6] - 0. 337587 Cos [©]2 + 2. 70311 Cos [¢] Sin[e] -
.30374 Cos [6] Cos[¢] Sin[e] +0. 75009 Cos [2] Sin[e]? -
.160252Sin[6] Sin[¢] -5.75551Cos[e] Sin[e] Sin[¢] -
.37843Sin[e]2Sin[2¢], 25.4283 +0.438578 Cos [&] - 2. 15445 Cos [6]2 -
. 316226 Cos [¢] Sin[e] +0.431729 Cos [6] Cos [¢] Sin[e] +
. 464945 Cos [2 ¢] Sin[6]?-0.478331Sin[6] Sin[¢] +
. 643766 Cos [6] Sin[e] Sin[¢] - 0.327531Sin[e]2Sin[2¢],
24. 6763 + 0. 00750891 Cos [6] - 7. 07093 Cos [6]2 + 2. 09091 Cos [¢] Sin[6] +
. 2939 Cos [6] Cos [¢] Sin[e] -2.98321Cos[2¢] Sin[e]?-4.34821Sin[e] Sin[¢] -
8.54925 Cos[6] Sin[6] Sin[¢] -2.83875Sin[6]2Sin[2¢],
26.5489 - 0. 656594 Cos [©6] - 1. 99621 Cos [6]2 + 1. 01398 Cos [¢] Sin[&] -
0.837318 Cos [6] Cos [¢] Sin[e] -3.41477 Cos[2 ¢] Sin[6]? +
1.12681Sin[e] Sin[¢] +4.22902Cos[e] Sin[e] Sin[¢] -3.06597Sin[6]?>Sin[2¢],
16. 9595 - 0. 172721 Cos [6] + 1. 63283 Cos [6]? -
0.248931 Cos[¢] Sin[e] +3.33861 Cos[6] Cos[¢] Sin[E] +
2.64507 Cos[2 ¢] Sin[e]? +0.642694Sin[e] Sin[¢] +
8.11311Cos[e] Sin[e] Sin[¢] +2.34011Sin[e]2Sin[2¢],
29. 0653 - 1. 16871 Cos [©] - 6. 70905 Cos [6]2 - 5. 18537 Cos [¢] Sin[e] +
3.70162 Cos[6] Cos[¢] Sin[e] -4.78784 Cos[2 ¢] Sin[e]? -
7.12255Sin[e] Sin[¢] +10. 9624 Cos [©] Sin[e] Sin[¢] +10.7787Sin[6]2Sin[2 ¢],
20. 8489 + 0. 389885 Cos [©] + 0. 901003 Cos [6]2 - 1. 12934 Cos [¢] Sin[e] -
5.26629 Cos [6] Cos [¢] Sin[e] - 1. 44079 Cos[2 ¢] Sin[e]? -
1.57621Sin[e] Sin[¢] +1.75637 Cos[e] Sin[e] Sin[¢] +2.4043Sin[e]2Sin[2¢]}

38

(20

O O O Fr O

N

inooj:= OF f [ParanetricPl ot 3D : " ppcont'];
gr anul ae = Show[MapThr ead [Par anetri cPl ot 3D[Reverse[
#1 {a, 1, 1} + .15#2 { Cos[©], Sin[e] Cos[¢], Sin[e] Sin[é#]}], {6, O, =},
{¢, 0, 2w}, DisplayFunction-ldentity] & {maxi nmunpositions,
fitresults}] /. Polygon[qg_] -» {EdgeForm[], Pol ygon[ql},
Di spl ayFuncti on -» $Di spl ayFuncti on, | nageSi ze » 250,
AxeslLabel -» {"z", "y", "x"}, Lighting- True];

Show the granulesin a separate Java viewer window to play with the 3D dataset interactively:

www.manaraa.com

<< JLink™; 39

I nstall Javal[];

liveAppl et = JavaNew["Live"];

IiveFrane = JavaNew["com wol fram j|i nk. Mat hAppl et Franme",
liveApplet, {"INPUT=" <> ToString[lnput Form[N[granul ae]]],
"W DTH=800", "HElI GHT=800"1}1;

liveFormWite["c: /tnp/Lysosones. dat", granul ae];

Acknowledgement

The author thanks Dr. Marc van Zandvoort and Dr. Wim Engels of Maastricht University for the kind supply of the 2-photon
microscopy images, and discussions on the problem.

Example 5: Eigenpatches

Gaussian Derivatives and Eigen-images
It has been shown that the so-called Eigen-images of alarge series of image small patches

have great similarity to partial Gaussian derivative functions [Olshausen1996, Olshausen1997]. The resulting images are also
often modeled as Gabor patches and wavelets.

inpo1:=1 mageFil e = Get URL["http://ww. bm 2. bnt. tue. nl/inage-anal ysi s/ Peopl e/ -
BRoneny/ FEV/ i mages/ nr 256. gi f"] ;
im= lnport[imgeFile,"AF'][1, 17;
Del eteFi |l e[i mageFil e];

In[204]:= & = 12;
Li st DensityPl ot [im Epil og -
{Gay, Table[Line[{{i, j}, (i +6&, j}, {i +6,] +&}, {i,] +86}, {i, |},
{, 2, 256, 15}, {i, 2, 256, 15}1}, | nageSi ze » 3007;

.
S

.v'
:
:
1

= i

www.manaraa.com

Figure 21. Location of the 289 small 12x 12 pixel patches taken from a 256 image of a 40
forest scene.

The small 12x 12 images are sampled with SubMatrix:

inf206]= set = Tabl e[SubMatrix[im {j, i}, {8, &6}], {J, 2, 256, 15}, {i, 2, 256, 15}1;
Di mrensi ons [set]

out2oel= {17, 17, 12, 12}

and converted into a matrix m with 289 rows of length 144. We multiply each small image with a Gaussian weighting func-
tion to simulate the process of observation, and subtract the global mean:

X2 +y?
In[207]:= © = 4; g=TabIe[Exp[— > o2] {x, -5.5, 5.5}, {y, -5.5, 5.5}];
o
set2 =Map[g# & set, {2}];
Pl us ee #
m=Fl atten[Map[Fl atten, set2, {2}]1, 1]; mean = ———4m8 ———
Lengt h[#]

m= N[m-nean[Flatten[m]]]; D nensions[m]
out210= {289, 144}

We calculate m" m, a 1442 matrix with the Dot product, and check that it is a square matrix:
n11]:= Di mensi ons [mMI'm= N[Tr anspose [m]. m]]

oupi= {144, 144)

The calculation of the 144 Eigen-values of a 144? matrix goes fast in Mathematica. Essential is to force the calculations to be
done numerically with the function N[]. Because mTm is a symmetric matrix, built from two 289x 144 size matrices, we have
144 (nonzero) Eigen-values:

in121:= Short [Ti m ng[evs = ei genval ues = Ei genval ues[mim]], 5]

Out[212]//Short=
{0. 109 Second, {2.94085x107, 8.22104 x10°, 3.41456x10°%, 2.04713x10°,
866307., 774802., <<133>>, 12.4795, 10.693, 9.79994, 8.49766, 6.89998}}

We calculate the Eigenvectors of the matrix mTm and construct the first Eigen-image by partitioning the resulting 144x 1
vector 12 rows. All Eigen-vectors normalized: unity length.

In213]:= ei genvect ors = Ei genvect or s [nTm];
ei geni mages = Tabl e[Partition[ei genvectors[[i]], 6], {i, 1, 8}1;
Di spl ayToget her Array [Li st Densi tyPl ot /@ei geni mages, | mageSi ze -» 350];
Di spl ayToget her Array [Li st Pl ot 3D /@ ei geni mages, | mageSi ze » 3507;

EIlI HIﬂuﬂﬂ

www.manaraa.com

Figure 12.22. Thefirst 8 Eigen-images of the 289 patches from figure 12.10. 41

In[216]:= noi se = Tabl e[Random[], {256}, {256}]; & =12;
set = Tabl e[SubMatri x[noise, {j, i}, {6 &}, {Jj, 3, 256, 15}, (i, 3, 256, 15}1;
m=Flatten[Map[Fl atten, set, {2}], 17;
m= N[m-nean[Fl atten[m]]]; nTm= N[Transpose[m]. m];
{ei genval uesn, ei genvectorsn} = Ei gensyst em[nirm];
ei geni magesn = Tabl e[Partition[ei genvectorsn[[i]], 8], {i, 1, 8}];

Di spl ayToget her Array[Li st Densi tyPl ot /@ei geni magesn, | mageSi ze -» 35017;

e B R T R

Figure 12.23. Thefirst 8 Eigen-images of 289 patches of 12x 12 pixels of white noise. Note that
none of the Eigen-images contains any structure.

Note that the distribution of the Eigen-values for noise are much different from those of a structured image. They are much
smaller, and the first ones are markedly less pronounced. Here we plot both distributions:

in223]:= Di spl ayToget her [
LogLi st Pl ot [evs, Pl otJoined -» True, Pl ot Range » {. 1, Automatic}],
LogLi st Pl ot [ei genval uesn, Pl ot Joi ned -» True], | nageSi ze » 2507;

1.x107
100000.

1000
10 \

0 20 40 60 80 100 120 140

Figure 12.24. Nonzero Eigen-values for a structured image (upper) and white noise (lower).
When we extract 49x49 = 2401 small images of 12x12 pixels at each 5 pixels, so they dlightly overlap, we get better
statistics.
A striking result is obtained when the image contains primarily vertical structures, like trees. We then obtain Eigenpatches
resembling the horizontal high order Gaussian derivatives/ Gabor patches (see figure 12.25).

in2241:=i mageFile = Get URL["http://ww. bmi 2. bnt . tue. nl /i nmage- anal ysi s/ Peopl e/ -
BRoneny/ FEV/ i mages/forest02.gi f"];
im= Inmport[imgeFile,"GF'][1, 11;
Del eteFi |l e[i mageFil e];

In227]:= & = 12;
set =Tabl e[SubMatrix[im {j, i}, {6, 6}, {J, 2, 246, 5}, {i, 2, 246, 5}7;
X2+y2
86=(6-1)/2; o=266, g=Table[N[Exp][- = 1], 1x, -66, 86}, {y, -85, 85}];
o
set2 =Map[g# & set, {2}];
Pl us ee #
m=Fl atten[Map[Fl atten, set2, {2}], 1]; mrean = ———8 ——
Lengt h[#]

www.manaraa.com

m=N[m-nean[Flatten[m]]]; mIm= N[Transpose[m]. m];
ei genvect ors = Ei genvect or s [mIm];
ei geni mages = Tabl e[Partition[ei genvectors[[i]], 6], {i, 1, 25}1;

42

inf2321:= Bl ock [{$Di spl ayFunction =1dentity}, pl =ListDensityPl ot [i m];
p2 = Show[G aphi csArray [Partition[Li stDensityPl ot /@eigeni nages, 5]11; 1]
Show[Gr aphi csArray [{pl, p2}, | mageSi ze » 350]7;

Eigen-images for 2401 slightly overlapping patches of 12x12 pixels from the image of the vertical trees. Note that the first
Eigenpatches resemble the high order horizonta derivatives.

www.manaraa.com

