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Introduction

Medical images are the primary source for diagnosis today. A wide variety of modalities (types of imaging) exist, each with a
specific application domain. Plain X-ray, diagnostic ultrasound, tomographic (‘slicing’) modalities such as Computed Tomog-
raphy  (CT),  Magnetic  Resonance  Imaging  (MRI)  and  Positron  Emission  Tomography  (PET),  and  the  imaging  of  nuclear
uptakes are amongst the most popular.
Images are hardly made on film anymore. The majority of modern hospitals have a fully digital department. Images are made
in huge quantities. A typical hospital with several hundreds of beds may take several hundred thousands of images per year.
Images  are  stored  in  digital  archives  (called  ‘Picture  Archive  and  Communication  Systems,  PACS’),  typically  of  Terabyte
size, and are available on diagnostic workstations in the so-called radiological ‘reading room’, where the diagnosis is made by
the radiologist.
Medical image analysis comes to assist in this process by means of modern computer vision techniques. The applications are
modules  in  the  diagnostic  workstation,  and  can  serve  of  a  wide  variety  of  clinical  tasks:  3D  volume  imaging,  quantitative
analysis of anatomical parameters (vessel width, pharmacon uptake, blood velocities, etc.), computer-aided diagnosis (pattern
recognition),  matching  of  different  modalities,  etc.  The  algorithms  are  highly  dominated  by  mathematical  theory,  which
makes Mathematica  an excellent tool for the design of such algorithms. E.g. shape, texture and optic flow (motion) detection
need differential geometry techniques, while pattern recognition relies on statistical and linear algebra methods.
The author started a new group in 2001 at the Dept. of Biomedical Engineering of the Eindhoven University of Technology
(TU/e), and selected Mathematica as the primary development base for the design of algorithms. Many student projects (PhD,
MSc, BSc) have now been brought to completion, with excellent response of the students and researchers.
Biomedical Engineering is the study where essentially the aspect of engineering courses is mixed with medical and biomedi-
cal  courses.  The  acquision  of  skills  in  mathematics,  programming,  statistics,  etc.  with  physiology,  anatomy,  epidemiology,
etc. is a good basis for the new engineer that will be working in close team cooperation with medical specialists, or in medical
companies. Worldwide this is a steadily growing relatively young direction.
In Eindhoven 2 Mastertracks can be followed: Biomedical Engineering (more generic techniques, BME) and Medical Engi-
neering (more patient related techniques, ME). In the BME track there are three directions: Biomedical Imaging and Model-
ing, Tissue Engineering & Cardiovascular Mechanics, and Biochemical Engineering.
This  keynote  gives  a  glimpse  into  this  large  field,  with  a  selection  of  examples  given  as Mathematica  notebooks.  The  text
accompanies the powerpoint slides,  shown during the keynote lecture at the International Mathematica  Symposium 2005 in
Perth, 6–10 August. The slides are available at www.bmi2.bmt.tue.nl/image-analysis/People/BRomeny/publications/IMS2005/ -
IMS2005Keynote.ppt (MS powerpoint format, 65 MB). 

Imaging Modalities

The most important modalities for the application of computer vision analysis applications are X-Ray, CT and MRI. A plain
X-ray is a projection image of a bundle of X-rays through the patient on a digital high resolution (typically 3500 0 pixels)
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detector. It is widely applied for the imaging of bone fractures, vessel anatomy (after injection of a iodine-containing contrast
agent that creates clear shadows by blocking the X-rays) and trauma.
A CT scanner make slices of the patient, by rotating an X-ray tube with a banana-shaped detector on the opposite side around
the patient (about 2 revolutions per second). From the measured attenuation profiles the unknown pixels of the patient’s ‘slice’
can be calculated. Typical resolution is 5122. Today the advent of multi-slice CT scanners, with 4 to even 64 rows of detec-
tors, has revolutionized the field. A full high resolution lung scan of over 2000 slices can be made within a single breathhold.
MRI works with a strong magnetic field. The patient is placed in a long static (most often superconducting) magnet, typically
of 1.5 Tesla (this is about 30000 times stronger than the earth’s magnetic field). In this field the magnetic dipole moment of
the  hydrogen  atoms  in  the  patient  is  directed  along  the  main  magnetic  field.  Extra  magnetic  coils  can  create  (very  short)
excitation  pulses,  to  steer  the  dipoles  in  perpendicular  directions.  During  the  relaxation  of  the  atoms  to  their  equilibrium
positions, they lose their energy as radio photons, which are measured by sensitive antennas around the patient. MRI is also a
tomographic (slice-forming) technique. The electronic steering of the dipoles is very versatile, many types of images can be
made, e.g. techniques exist for blood flow measurement, spectroscopic analysis of different molecules, functional activity of
the brain, local body temperature, etc.

3D Volume Imaging

The stack of 2D tomographic images (typically with 1 mm resolution in-plane, 1.5–2 mm between planes) gives the full 3D
information.  These  voxels  (volume  pixels)  are  used  in  3D  volume  rendering  systems,  which  are  now  widely  available  as
commercial systems. The images are generated (often on the fly, real-time) by calculating the rays, emanating from a virtual
light source, reflected on the patient’s structure of interest, towards a virtual observer position. Modern graphics cards (GPU’
s, Graphical Processing Units) are now well programmable, and are becoming popular for this purpose.
The  3D  imaging  is  only  possible  when  the  objects  of  interest  can  be  clearly  defined.  This  is  done  by  a  process  called
‘segmentation’. E.g. in order to only visualize the blood vessels, all other structures have to made transparent, which should
be programmed in the computer with computer vision techniques.
Volume visualization is now a mature field.  New recent techniques include ‘virtual endoscopy’, where the camera virtually
‘flies through’ the stack of 2D CT slices of  air-filled intestines of the patient to search for possible polyps,  the pre-stage of
colon cancer. Diffusion Tensor Imaging is the MRI technique where the Brownian motion of water is measured. This motion,
normally with 3D Gaussian distribution, becomes ellipsoidal when restricted by a tubular structure, such as a nerve fibre of
muscle cell. The longest Eigenvector of the diffusion tensor, measured in every voxel, gives the primary direction of the fibre.
This is an example of the advent of complex valued imaging (in this case a 3 3 tensor per voxel).

Diagnostic Workstations

Every  major  vendor,  like  Philips,  Siemens,  GE,  Toshiba,  etc.  has  a  line  of  diagnostic  workstations.  These  electronic  light-
boxes have completely replaced the conventional lightbox, and typically carry a wide range of applications for the radiologist
and  the  surgeon.  Often  used  viewing  functions  are  the  cine-loop  view  of  stacks  of  images,  2D  slicing  in  many  different
directions  other  then  in  the  original  acquisition  direction,  and  3D  volume  visualization.  The  format  for  medical  images  is
DICOM, now universally adopted. This is a complex format, with hundreds of descriptors of the image, the patient’s demo-
graphic  data,  the  acquisition  technique,  security  checks,  compression  etc. Mathematica  has  now  full  reading  and  writing
capability of DICOM files on board.
Such workstations typically offer a wide range of applications. Dedicated packages are offered for 3D volume visualization,
cardiac analysis,  virtual endoscopy, computer-aided diagnosis (see next section), peripheral vessel analysis, functional MRI,
multi-modality image registration, etc.
The  3D  volume  visualization  and  the  interactive  manipulation  of  these  visualizations  can  also  be  performed  on  modern
Graphical Processing Units (GPU’s, game-cards)), which are nowadays 20–30 times more powerful then state-of-the-art CPU’
s. See e.g. the new start-up company 3mensio (www.3mensio.com).

Computer-aided Diagnosis

The  overwhelming  amount  of  images,  and  the  many  quantitative  questions  about  the  images,  call  for  computer-assisted
analysis.  Medical  image  analysis  is  an  active  research  field,  with  many  dedicated  large  conferences  (see  e.g.  MICCAI,
www.miccai.org).
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Computer-aided diagnosis is mainly targeting the major diseases, as there is the larger societal gain and market. The primary
areas  of  interest  are  digital  mammography  (finding  tumors,  microcalcifications  and  masses  in  breast  photographs),  lung
screening (finding lung tumors (often seen as ‘nodules’), vessel occlusions, sarcoidosis), cardiac analysis (finding stenosis of
the  coronary  arteries,  infarct  areas,  cardiac  output;  heart  diseases  kill  most  people  in  the  Western  world)  and  colon  cancer
(finding polyps).
The methods used span all areas of mathematics and statistics. Any computer vision area has applications in CAD, like shape
analysis with differential geometrical methods, shape variation and segmentation with linear algebra methods, texture analysis
and pattern recognition with statistical cluster analysis methods, etc.
The goal of the designer is to create a user-friendly, effective and validated method for medical specialists to be used in daily
clinical practice. There is a strong collaboration between the medical imaging industry and university research centers.

Image Analysis with Mathematica at TU/e

The advantages of Mathematica  for the design of new algorithms are evident. The integration of full symbolic functionality
with fast numerical capability is unique. Images are big data, and since version 4 these are easily handled. Really big images,
of  several  hundreds  of  megabytes,  should  be  processed  by  dedicated  lower-level  or  even  hardware  supported  systems.
Mathematica’s strong point lies in the design phase.
Students  easily  adopt  the  functional  programming  style.  At  Eindhoven,  we  give  regular  small  1-day  courses,  when  a  new
cohort  of  students  enters  a  new  course  or  program.  Reports  of  internships  are  directly  written  as  interactive Mathematica
notebook, giving automatically documented code to the teacher. The interpreter mode invites to ‘play with mathematics’, an
essential  skill  for  mastering  computer  vision  techniques.  See  for  a  range  of  examples  the  notebooks  available  at
www.bmi2.bmt.tue.nl/image-analysis/Education/index.html.
The  code  resembles  the  theory  in  the  textbooks  and  literature.  We  have  encountered  quite  a  number  of  examples  where
students implemented a paper in a few days in Mathematica, just by entering the formulas from the paper.
At  TU/e  we  have  a  strong  emphasis  on  design-centered  learning. Mathematica  fits  excellent  in  this  endeavor.  E.g.  in  the
second year,  students  get  the  task  to  analyze  microscopy  images  from blood cells,  to  find the  cancer  cells.  They do  this  in
Mathematica, which is their first encounter with the program. They brainstorm to develop their own techniques, recognizing
cells by their shape (‘what is shape’?), size, number, color etc. Ten groups of 8 students each work for 8 weeks on the prob-
lem, and present their results in a common seminar, which is always an exciting and competitive event. This course is given
high ranks by the students.
At TU/e every student receives a 50% sponsored high-end laptop (we have now over 10.000 in total on the TU/e campus).
The campus premium license for Mathematica allows full use for students and staff alike.
We  are  developing  a Mathematica-based  library  of  advanced,  multi-scale,  computer  vision  algorithms,  called MathVision-
Tools [2]. We invite interested laboratories for a possible collaboration.

Mathematica Kernel Server

At TU/e we have installed two dedicated remote Mathematica kernel servers. The first one is a cluster of high-end Linux PC’
s, 2.8 GHz, 2 GB RAM. See math1.bmt.tue.nl. The second one is a Tyan-motherboard TX46 based 64-bit Linux Mathematica
server with 4 AMD Opteron 848 CPU’s of 3.2 GHz and 32 GB DDR 400 MHz ECC RAM (16 x 2048 MB), 8MB per CPU,
all fully addressable from any CPU (for details see www.tyan.com/products/html/barebone.html.
Both systems are very popular. It enables especially BME students with older laptops to run powerful remote kernels, while
the Mathematica  frontend runs on a modest computer. The 32GB memory server is highly popular for large number-crunch-
ing tasks with PhD students. We fully exploit the use of Parallel Mathematica. Both systems can also be accessed from home
by a secure VPN connection.

Biomimicking: Learning from Visual Perception Mechanisms

Computer-aided  diagnosis  aims  to  assist  in  finding  pathologies.  This  is  by  far  not  an  easy  task.  There  exist  hundreds  of
specific theories and applications, and the quest is for generic, robust techniques.
The human visual system has an amazing capability with respect to instantly recognizing (deviating) target structures. It is of
substantial interest to study modern neurophysiological findings, in order to mimic these in a computer implementation. The
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author  has  chosen  this  as  one  of  the  lead  focus  areas  of  research.  See  the  textbook  (written  in Mathematica)  “Front-End
Vision and Multi-Scale Image Analysis” [1].
A  key  design  feature  seems  to  be  the  measurement  of  the  images  at  a  wide  range  of  scales.  This  is  already clear  from the
structure of the retina, which is designed to do exactly this. The stack of images at different scales (‘blurring’ levels) creates a
3D volume, which is known as a ‘scale-space’. Image structure at a larger scale is more ‘important’ then fine structure, and
with  further  blurring  image  structure  gradually  gets  lost.  When  e.g.  the  paths  of  singular  points  (maxima,  minima,  saddle
points) are followed over scale, we observe many annihilations (sometimes also creations). These so-called toppoints can be
ordered into a hierarchical tree structure,  which give a natural  decomposition of a complex scene. We currently have many
projects pursuing this important ‘deep structure’ of images.
Another important realization is that the primary visual cortex (in the back of our head) seems to contains many cells that take
high order derivatives of the incoming retinal images, at least up to fourth order. Modeling this leads to a wide spectrum of
differential geometric entities, called ‘features’. They should be invariant to different types of geometric transformations, so
are also called ‘invariants’. Examples of how these may be constructed with Mathematica are given in Example #2.
Interestingly,  when  the  process  of  blurring  is  mathematically  known (isotropic  blurring  is  governed by  the  linear  diffusion
equation, a linear second order PDE), the process of deblurring (which is well known to be ill-posed) can be approximated by
inverting  the  process.  A  ‘scale-space’  approach  to  the  deblurring  of  Gaussian  blur  is  discussed  in  Example  #3.  A  main
strength of Mathematica  becomes clear: the strong integration of symbolic and numerical capabilities with pattern matching
allows  the  calculation  of  complex  analytical  results,  and  replacing  the  derivatives  in  the  large polynomial  expressions  with
numerical implementations of convolutions with gaussian derivative kernels.

Conclusion

For the design of complex mathematical algorithms for modern computer vision techniques Mathematica  is ideal. We found
high acceptance and learning rates of students at all levels, and we have accomplished a complete integration of Mathematica
in  our  image  analysis  research.  For  an  overview  of  the  projects  carried  out,  past  and  present,  see  the  BMIA  website  at
www.bmi2.bmt.tue.nl/image-analysis.  Most  notebooks  as  are  available  as Mathematica  documents  and  as  PDF  files.  The
current  development  of Mathematica  into  a  strong  support  of  64  bit  architectures,  fast  numerical  capabilities  and  more
efficient handling of huge datasets is warmly welcomed. It justifies our strategy that we have chosen the right environment to
have invested in.
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Appendix: Example Notebooks

Initialization

In[11]:= Off General::"spell1" ;

Off General::spell ;

The Java-based function GetURL reads data from the internet.
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In[13]:= Needs["JLink`"];

GetURL[url_String, opts___?OptionQ] :=

JavaBlock[

Module[{u, stream, numRead, outFile, buf},

InstallJava[];

u = JavaNew["java.net.URL", url];

(* This is where the error will show up if the URL is not valid.  

 A Java exception will be thrown during openStream, which  

 causes the method to return $Failed.

*)

stream = u@openStream[];

If[stream === $Failed, Return[$Failed]];

buf = JavaNew["[B", 5000]; (* 5000 is an arbitrary buffer size *)

outFile = OpenTemporary[DOSTextFormat->False, CharacterEncoding->{}];

While[(numRead = stream@read[buf]) > 0,

WriteString[outFile, FromCharacterCode[If[# < 0, # + 256, #]&

Take[JavaObjectToExpression[buf], numRead]]]

];

stream@close[];

Close[outFile]   (* Close returns the filename *)]];

Unprotect[Get];

Get[s_String] :=

Module[{tempFile, res},

tempFile = GetURL[s];

If[tempFile =!= $Failed,

res = Get[tempFile];

DeleteFile[tempFile];

res,

(* else *)

$Failed

]

] /; StringMatchQ[s, "http://*"]

Protect[Get];

NotebookOpenURL[url_String] := NotebookOpen[GetURL[url]]

Read the package with the definitions for the Gaussian derivatives from the internet.

Functions from the Book “Front-End Vision & Multi-Scale Image Analysis”

In[19]:= Get[ GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/BRomeny/FEV/-

FEV.m"]]

FEV package version 2.0, for Mathematica 5.2

FEV package version 2.0, for Mathematica 5.1

Example 1: Image Operations are Fast
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Read an Image from the Net:

In[20]:= imageFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/mr256.gif"];

im = Import[imageFile,"GIF"] 1,1 ;

DeleteFile[imageFile];

p1=ListDensityPlot[im];

The Gradient of an Image 
L

x

2 L

y

2

Derivatives  of  discrete  images  can  be  calculated  in  a  robust  way  by  convolution  with  Gaussian  derivative  kernels.  The
function gD implements this convolution by means of ListConvolve (see the package FEV.m in the initialization).

In[24]:= ?gD

gD im,nx,ny, ,options calculates the Gaussian derivative of a 2D image

by spatial convolution. It is optimized for speed by 1D convolutions

per dimension. The image is considered cyclic in each direction.

im 2D input image List

nx order of differentiation to x Integer

ny order of differentiation to y Integer

scale in pixels

options optional kernelSampleRange: range of kernel

sampled in multiples of . Default: kernelSampleRange 6,6

This shows the gradient (edge magnitude):

In[25]:= 1;

ListDensityPlot gD im, 1, 0, 2 gD im, 0, 1, 2 ;
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Zerocrossings of the Laplacian Lxx Lyy 

The maximum value of the first order edges is attained at the zerocrossings of the second derivative of the image. The proper
second  order  derivative  is  the  second  order  directional  derivative  in  the  gradient  direction  (see  example  2).  The  Laplacian
Lxx Lyy is a good and often used approximation, and it is easy to calculate.

In[27]:= 1;

laplacian gD im, 2, 0, gD im, 0, 2, ;

ListDensityPlot laplacian ;

In[30]:= contours ListContourPlot laplacian, Contours 0 , ContourStyle Red ;

7
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In[31]:= Show p1, contours ;

Magnify the image to study the contours and their underlying greyvalues. Play with different scales .

Example 2: The Differential Structure of Images

This is an excerpt of text from the Mathematica  textbook “Front-End Vision and Multi-Scale Image Analysis” by the author
[1].

Initialization

Use the initialization of example 1.

Image Structure

The structure is described by the local multi-scale derivatives of the image. 

In[32]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/SpiralCTAbdomen.jpg"];

image = Import[imgFile,"JPEG"];

DeleteFile[imgFile];

Show[image];
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An example of a need for segmentation: 3D rendering of a spiral CT acquisition of the abdomen of a patient with Leriche’s
syndrome.
We will use the tools of differential geometry. 

Why is 
L

x

2 L

y

2

 a good edge detector?

And 
L

y

2 2 L

x2
2

L

x

L

y

2 L

x y

L

x

2 2 L

y 2
 a good corner detector?

How do we come to such formulas?
We want to detect features invariant to coordinate transformations, e.g. translations, rotations.

L

x
is not invariant, 

L

x

2 L

y

2

 is invariant.

Isophotes and Flowlines

In[36]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/mr128.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[39]:= Block $DisplayFunction Identity, dp, cp ,

dp ListDensityPlot gD im, 0, 0, # & 1, 2, 3, 4 ;

cp ListContourPlot gD im, 0, 0, # ,

ContourStyle List Hue .1 Range 10 & 1, 2, 3, 4 ;

pa MapThread Show, dp, cp ; Show GraphicsArray pa , ImageSize 500 ;

9
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In[40]:= blob x_, y_, x_, y_, _ :
1

2 2
Exp

x x 2 y y 2

2 2
;

blobs x_, y_ : blob x, y, 10, 10, 4 .7 blob x, y, 15, 20, 4 0.8 blob x, y, 22, 8, 4 ;

Block $DisplayFunction Identity , p1 Plot3D blobs x, y .00008,

x, 0, 30 , y, 0, 30 , PlotPoints 30, Mesh False, Shading True ;

c ContourPlot blobs x, y , x, 0, 30 , y, 0, 30 , PlotPoints 30, ContourShading False ;

c3d Graphics3D Graphics c 1 . Line pts_ val Apply blobs, First pts ;

Line Map Append #, val &, pts ;

Show p1, c3d, ViewPoint 1.393, 2.502, 1.114 , ImageSize 250 ;

Isophote  on  a  2D  ‘landscape’  image  of  three  Gaussian  blobs,  depicted  as  heightlines.  The  height  is  determined  by  the
intensity.
Isophotes  in  3D  are  surfaces  (the  3D  OpenGL  viewer  for Mathematica  by  Jens-Peer  Kuska  can  be  downloaded  from
phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3):

In[44]:= Get "MathGL3d`OpenGLViewer "̀ ; isos

Compile , 103 Table Exp
x2

18

y2

8

z2

18
, z, 10, 10 , y, 10, 10 , x, 10, 10 ;

MVListContourPlot3D isos , Contours .1, 1, 10 , ImageSize 150 ;

Isophotes in 3D are surfaces. Shown are the isophotes connecting all voxels with the values 0.1, 1, 10 and 100 in the discrete
dataset of two neighboring 3D Gaussian blobs.

Directional Derivatives

The directional first order derivative in the direction v is given by v .
x

,
y

.

10
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In[46]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/mip147.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[49]:= northeast im_, _ : 2 , 2 . gD im, 1, 0, , gD im, 0, 1, ;

southsouthwest im_, _ : 3 2, 1 2 . gD im, 1, 0, , gD im, 0, 1, ;

DisplayTogetherArray ListDensityPlot

im, northeast im, 1 , southsouthwest im, 1 , ImageSize 300 ;

Directional derivatives. Image from the Eurorad database (www.eurorad.org), case 147.

In[52]:= Table ListDensityPlot Cos , Sin . gD im, 1, 0, 1 , gD im, 0, 1, 1 ,

, 0, 2 , 8 ;

First Order Gauge Coordinates

We change from extrinsic geometry to intrinsic geometry.

We fix in each point separately our local coordinate frame: the gradient vector w
L

x
,

L

y
; the perpendicular direction is

v
0 1

1 0
. w

L

y
,

L

x
.

In[53]:= ContourPlot x2 y2, y, 2, 4.5 ,

x, 2, 4.5 , Contours Range 2, 100, 4 , Epilog
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PointSize .02 , Point 3, 3 , Arrow 3, 3 , 3 .5 2 , 3 .5 2 ,

Arrow 3, 3 , 3 .5 2 , 3 .5 2 , Text "v", 3.8, 2.2 ,

Text "w", 3.8, 3.8 , Frame False, ImageSize 100 ;

v

w

Local first order gauge coordinates v, w .  The unit vector v  is everywhere tangential to the isophote (line of constant inten-
sity), the unit vector w is everywhere perpendicular to the isophote and points in the direction of the gradient vector.
This set of local directions is called a gauge, the new frame forms the gauge coordinates.
We want to take derivatives with respect to the gauge coordinates. 

Any  derivative  expressed  in  gauge  coordinates  is  an  orthogonal  invariant.  E.g.  it  is  clear  that 
L

w
 is  the  derivative  in  the

gradient direction, and this is just the gradient itself, an invariant.

And 
L

v
0,  as  there is  no change in the luminance as we move tangentially along the isophote,  and we have chosen this

direction by definition.
We can only calculate derivatives to x and y. So we need to go from v, w  to x, y .
In Mathematica: The frame vectors w and v are defined as

In[54]:= w
Lx, Ly

Lx2 Ly2
; v

0 1

1 0
.w;

The directional differential operators v .
x

,
y

 and w .
x

,
y

 are defined as:

In[55]:= v. x#, y# &;

w. x#, y# &;

The notation (...#)& is a ‘pure function’ on the argument #:

In[57]:= #2 #5 & zz

Out[57]= zz2 zz5

Higher order derivatives are constructed through nesting multiple first order derivatives, as many as needed. The total transfor-
mation routine is now:

In[58]:= Unprotect gauge2D ; Clear f, L, Lx, Ly, gauge2D ;

gauge2D f_, nv_, nw_ : Module Lx, Ly, v, w ,

w
Lx, Ly

Lx2 Ly2
; v 0, 1 , 1, 0 .w;

Simplify

Nest v. x#, y# & , Nest w. x#, y# & , f, nw , nv .

Lx D f, x , Ly D f, y ;
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where f  is a symbolic function of x and y, and nw  and nv  are the orders of differentiation with respect to w resp v. Here is an

example of its output: the gradient 
L

w
:

In[60]:= Lw gauge2D L x, y , 0, 2

Out[60]= L 0,1 x, y
2
L 0,2 x, y 2 L 0,1 x, y L 1,0 x, y L 1,1 x, y

L 1,0 x, y
2
L 2,0 x, y L 0,1 x, y

2
L 1,0 x, y

2

Using pattern matching with the function shortnotation (see FEV.m) we get more readable output:

In[61]:= Lw gauge2D L x, y , 0, 1 shortnotation

Out[61]//DisplayForm=

Lx2 Ly2

In[62]:= Lww gauge2D L x, y , 0, 2 shortnotation

Out[62]//DisplayForm=

Lx
2 Lxx 2 Lx Lxy Ly Ly

2 Lyy
Lx2 Ly2

In[63]:= Lv gauge2D L x, y , 1, 0 shortnotation

Out[63]//DisplayForm=

0

In[64]:= Lvv gauge2D L x, y , 2, 0 shortnotation

Out[64]//DisplayForm=

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy
Lx2 Ly2

This calculates the Laplacian in gauge coordinates, Lvv Lww (what do you expect?):

In[65]:= gauge2D L x, y , 0, 2 gauge2D L x, y , 2, 0 shortnotation

Out[65]//DisplayForm=

Lxx Lyy

The next figure shows the v, w  gauge frame in every pixel of a simple 322 image with 3 blobs:

In[66]:= blob x_, y_, x_, y_, _ :
1

2 2
Exp

x x 2 y y 2

2 2
;

blobs x_, y_ :

blob x, y, 10, 10, 4 .7 blob x, y, 15, 20, 4 0.8 blob x, y, 22, 8, 4 ;

im Table blobs x, y , y, 30 , x, 30 ;

Block $DisplayFunction Identity, gradient, norm, , frame ,

norm # Sqrt #.# &;

1; gradient Map norm,

Transpose gD im, 1, 0, , gD im, 0, 1, , 3, 2, 1 , 2 ;
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frame Graphics White, Arrow #2 .5, #2 .5 #1 , Red,

Arrow #2 .5, #2 .5 #1 2 , #1 1 &;

ar MapIndexed frame, gradient 2, 2 ;

lp ListDensityPlot gD im, 0, 0, ;

In[70]:= Show lp, ar , Frame True, ImageSize 410 ;

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Due to  the  fixing of  the  gauge by removing the  degree of  freedom for  rotation (that  is  why Lv 0),  we have an important
result: every derivative to v and w is an orthogonal invariant.
The final step is the operational implementation of the gauge derivative operators for discrete images. This is simply done by
applying pattern matching: 

first calculate the symbolic expression

then replace any derivative with respect to x and y by the numerical derivative gD[im,nx,ny, ] 

and then insert the pixeldata in the resulting polynomial function;

as follows:

In[71]:= Unprotect gauge2DN ; Clear gauge2DN ;

gauge2DN im_, nv_, nw_, _ : Module im0 ,

gauge2D L x, y , nv, nw .

Derivative nx_, ny_ L_ x_, y_ gD im0, nx, ny, . im0 im ;

This writes  our  numerical  code  automatically.  Here  is  the  implementation  for Lvv.  If  the  image  is  not  defined,  we  get  the
formula returned:

In[73]:= Clear im, ; gauge2DN im, 2, 0, 2

14
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Out[73]= gD im, 0, 2, 2 gD im, 1, 0, 2 2

2 gD im, 0, 1, 2 gD im, 1, 0, 2 gD im, 1, 1, 2

gD im, 0, 1, 2 2 gD im, 2, 0, 2 gD im, 0, 1, 2 2 gD im, 1, 0, 2 2

If the image is available, the invariant property is calculated in each pixel:

In[74]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/thorax02.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[77]:= DisplayTogetherArray ListDensityPlot

im, gauge2DN im, 0, 1, 1 , gauge2DN im, 2, 0, 4 , ImageSize 400 ;

The gradient Lw  (middle) and Lvv, the second order directional derivative in the direction tangential to the isophote (right) for
a 2562 X-thorax image at a small scale of 0.5 pixels. Note the shadow of the coins in the pocket of his shirt in the lower right.

Gauge Coordinate Invariants: Examples

Ridge detection

Lvv is a good ridge detector, since at ridges the curvature of isophotes is large.

In[78]:=

f x_, y_ : Sin x
1

3
Sin 3 x 1 .1 y ;

DisplayTogetherArray Plot3D f x, y , x, 0, , y, 0, ,

ContourPlot f x, y , x, 0, , y, 0, , PlotPoints 50 , ImageSize 370 ;

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Isophotes are much more curved at the top of ridges and valleys then along the slopes of it. Left: a slightly sloping artificial
intensity landscape with two ridges and a valley, at right the contours as isophotes.
Let us test this on an X-ray image of fingers and calculate Lvv scale 3.
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In[79]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/hands.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[82]:= Lvv gauge2DN im, 2, 0, 3 ;

DisplayTogetherArray ListDensityPlot im, Lvv , ImageSize 450 ;

The  invariant  feature Lvv  is  a  ridge  detector.  Here  applied  on  an  X-ray  of  two  hands  at 3  pixels.  Image  resolution:
361 239 pixels.
Noise has structure too. Here are the ridges of uniform white noise:

In[84]:= im Table Random , 128 , 256 ; ListDensityPlot gauge2DN im, 2, 0, 4 ;

The invariant feature Lvv detects the ridges in white noise here, 4 pixels, image resolution: 256 x 128 pixels.

Isophote Curvature in Gauge Coordinates

Isophote curvature  is defined as the change w ''
2 w

v2
 of the tangent vector w '

w

v
v in the gradient-gauge coordinate

system. The definition of an isophote is: L v, w Constant, and w w v . So, in Mathematica  we implicitly differentiate the
equality (==) to v:

In[85]:= Clear v, w ;

L v, w v Constant;

v L v, w v Constant

Out[87]= w v L 0,1 v, w v L 1,0 v, w v 0
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We know that Lv 0 by definition of the gauge coordinates, so w ' 0, and the curvature  = w '' is found by differentiating
the isophote equation again and solving for w '':

In[88]:= Solve v,v L v, w v Constant . w' v 0, w'' v

Out[88]= w v
L 2,0 v, w v
L 0,1 v, w v

So 
Lvv

Lw
. In Cartesian coordinates we recognize the well-known formula:

In[89]:= im .;
gauge2D L x, y , 2, 0

gauge2D L x, y , 0, 1
; shortnotation

Out[89]//DisplayForm=

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy

Lx2 Ly2
3 2

Here is an example of the isophote curvature at a range of scales for a sagittal MR image:

In[90]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/mr256.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[93]:= plot _ : ListDensityPlot
gauge2DN im, 2, 0,

gauge2DN im, 0, 1,
, PlotRange 5, 5 ;

In[94]:= DisplayTogetherArray

ListDensityPlot im , plot 1 , plot 2 , plot 3 , ImageSize 600 ;

The isophote curvature  is a rotationally and translationally invariant feature. It takes high values at extrema. Image resolu-
tion: 2562 pixels.

Affine Invariant Corner Detection

Corners are defined as locations with high isophote curvature and high intensity gradient. An elegant reasoning for an affine
invariant corner detector was proposed by Blom [Blom1991a], then a PhD student of Koenderink. We reproduce it here using

Mathematica.  Blom  proposed  to  take  the product  of  isophote  curvature 
Lvv

Lw
 and  the  gradient Lw  raised  to  some  (to  be

determined) power n: 
n Lvv

Lw
Lw

n Lw
n LvvLw

n 1. 

An obvious advantage is invariance under a transformation that changes the opening angle of the corner. Such a transforma-
tion is the affine transformation. An affine transformation is a linear transformation of the coordinate axes:
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x '

y '
1

a d b c

a b

c d
x y e f

We omit  the  translation  term e f  and  study  the  affine  transformation  proper.  The  term 
1

ad bc
 is  the  determinant  of  the

transformation matrix, and is called the Jacobian. Its purpose is to adjust the amplitude when the area changes.
A good example of the effect of an affine transformation is to study the projection of a square from a large distance. Rotation
over a vertical axis shortens the x-axis. Changing both axes introduces a shear,  where the angles between the sides change.
The following example illustrates this by an affine transformation of a square:

In[95]:= square 0, 0 , 1, 0 , 1, 1 , 0, 1 , 0, 0 ;

affine
5 2

0 .5
; afsquare affine.# & square;

DisplayTogetherArray

Graphics Line # , AspectRatio 1 & square, afsquare , ImageSize 200 ;

Figure 6.11. Affine transformation of a square, with transformation matrix 
5 2
0 .5

mapped on each 

point.

The  derivatives  transform  as 
x'

y'

1

ad bc

a b

c d
x y .  We  put  the  affine  transformation A

a b

c d
 into  the

definition of affinely transformed gauge coordinates:

In[98]:= Clear a, b, c, d ;

gauge2Daffine f_, nv_, nw_ : Module Lx, Ly, v, w, A
a b

c d
,

w
Lx', Ly'

Lx'2 Ly'2
; v

0 1

1 0
.w; Simplify

Nest v.
1

Det A
A. x#, y# &, Nest w.

1

Det A
A. x#, y# &, f, nw ,

nv . Lx'
a Lx b Ly

Det A
, Ly'

c Lx d Ly

Det A
. Lx xf, Ly yf ;

The equation for the affinely distorted coordinates Lvava Lwa

n 1 now becomes:

In[99]:= gauge2Daffine L x, y , 2, 0 gauge2Daffine L x, y , 0, 1 n 1 Simplify

shortnotation

Out[99]//DisplayForm=

a2 c2 Lx
2 2 a b c d Lx Ly b2 d2 Ly

2

b c a d 2

1
2 3 n

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy

b c a d 2

Very interesting: when n 3 and for an affine transformation with unity Jacobean (ad bc 1, a so-called special transforma-
tion) we are independent of the parameters a, b, c and d! This is the affine invariance condition.
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So  the  expression 
Lvv

Lw
Lw

3 LvvLw
2 2LxLxyLy LxxLy

2 Lx
2Lyy  is  an affine  invariant  corner  detector.  This  feature

has the nice property that it is not singular at locations where the gradient vanishes, and through its affine invariance it detects
corners at all ‘opening angles’.
We show corner detection at two scales on an image:

In[100]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/Utrecht256.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[103]:= im SubMatrix im, 1, 128 , 128, 128 ;

corner1 gauge2DN im, 2, 0, 1 gauge2DN im, 0, 1, 1 2;

corner3 gauge2DN im, 2, 0, 3 gauge2DN im, 0, 1, 2 2;

In[106]:= DisplayTogetherArray

ListDensityPlot im, corner1, corner3 , ImageSize 500 ;

Corner  detection with the L vvLw
2  operator.  Left:  original  image,  dimensions 1282.  Middle:  corner  detection at  = 1 pixel;

right:  corner  detection  at  =  3  pixels.  Isophote  curvature  is  signed,  so  note  the  positive  (convex,  light)  and  negative
(concave, 2dark) corners.

Second Order Structure

The second order structure of the intensity landscape is rich.

In[107]:= s Series L x, y , x, 0, 2 , y, 0, 2 Normal shortnotation

Out[107]//DisplayForm=

L 0, 0 x Lx
x2 Lxx
2

y
x2 Lxxy

2
x Lxy Ly

1
4
y2 x2 Lxxyy 2 x Lxyy Lyy

The  second  order  term  is 
1

2
Lxxx2 Lxyxy

1

2
Lyy y2.  The  second  order  derivatives  are  the  coefficients  in  the  quadratic

polynomial that describes the second order landscape.

In[108]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/thorax02.gif"];

im = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];
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In[111]:= DisplayTogetherArray ListDensityPlot im ,

ListPlot3D gD im, 0, 0, 2 , Mesh False , ImageSize 320 ;

In[112]:= 1

Out[112]= 1

Left: An X-thorax image (resolution 2562) and its ‘intensity landscape’ at 2 pixels (right).

The Shape Index

When the principal  curvatures 1  and 2  are  considered  coordinates  in  a  2D ‘shape graph’,  we see that  all  different  second
order shapes are represented. Each shape is a point on this graph. The following list gives some possibilities:
When both curvatures are zero we have the flat shape.

When both curvatures are positive, we have concave shapes.

When both curvatures are negative, we have convex shapes.

When both curvatures the same sign and magnitude: spherical shapes.

When the curvatures have opposite sign: saddle shapes.

When one curvature is zero: cylindrical shapes.
Koenderink proposed the shape index. It is defined as: 

shapeindex
2

arctan
1 2

1 2
, 1 2.

The expression for 
1 2

1 2
can be markedly cleaned up:

In[113]:= Simplify
1 2

1 2

shortnotation

Out[113]//DisplayForm=
2 Lx Lxy Ly Lxx Ly

2 Lx
2 Lyy

Lx2 Ly2
3 2

1

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy
Lx2 Ly2

3 2
2

2 Lx Lxy Ly Lxx Ly2 Lx2 Lyy
Lx2 Ly2

3 2
1

2 Lx Lxy Ly Lxx Ly2 Lx2 Lyy
Lx2 Ly2

3 2
2

so we get for the shape index:

shapeindex
2

arctan
Lxx Lyy

Lxx
2 4Lxy

2 2LxxLyy Lyy
2

.
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The length of the vector is the curvedness:

curvedness
1

2 1
2

2
2 .

In[114]:=
1

2
1
2

2
2 Simplify shortnotation

Out[114]//DisplayForm=

1
2

2 Lx Lxy Ly Lxx Ly2 Lx2 Lyy

Lx2 Ly2
3 2

1

2
2 Lx Lxy Ly Lxx Ly2 Lx2 Lyy

Lx2 Ly2
3 2

2

2

In[115]:= shapes Table GraphicsArray

Table Plot3D 1 x
2

2 y
2, x, 3, 3 , y, 3, 3 , PlotRange 18, 18 ,

PlotLabel " 1 " ToString 1 ", 2 " ToString 2 ,

AspectRatio 1, DisplayFunction Identity,

Boxed True, Mesh False ,

2, 1, 1, 1 , 1, 1, 1 ;

In[116]:= Show GraphicsArray

Graphics Arrow 0, 0 , .7, .5 , Red, PointSize .02 , Point .7, .5 ,

PlotRange 1, 1 , 1, 1 , Frame True, Axes True,

AxesLabel " 1", " 2" , AspectRatio 1 , shapes , ImageSize 450 ;

0.75 0.5 0.25 0 0.25 0.5 0.75 1

0.75

0.5

0.25
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0.25
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1

1

2

1 1, 2 1 1 0, 2 1 1 1, 2 1

1 1, 2 0 1 0, 2 0 1 1, 2 0

1 1, 2 1 1 0, 2 1 1 1, 2 1

Left:  Coordinate space of  the shape index. Horizontal  axis:  maximal principal  curvature 1,  vertical  axis:  minimal  principal
curvature 2. The angle of the position vector determines the shape, the length the curvedness. Right: same as middle set of
figure 6.22.

Third Order Image Structure: T-junction Detection

In[117]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/blankcheque.jpg"];

im = Import[imgFile,"JPEG"];

DeleteFile[imgFile];
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In[120]:= Show im, ImageSize 210 ;

The painting ‘the blank cheque’ by the famous Belgian surrealist painter René Magritte (1898–1967).

In[121]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/Images/blocks.gif"];

blocks = Import[imgFile,"GIF"] 1,1 ;

DeleteFile[imgFile];

In[124]:= ListDensityPlot blocks,

Epilog circles Circle 221, 178 , 13 , Circle 157, 169 , 13 ,

Circle 90, 155 , 13 , Circle 148, 56 , 13 ,

Circle 194, 77 , 13 , Circle 253, 84 , 13 , ImageSize 300 ;

T-junctions often emerge at occlusion boundaries. The foreground edge is most likely to be the straight edge of the "T", with
the occluded edge at some angle to it. The circles indicate some T-junctions in the image.
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Let us zoom in on a T-junction of an observed image:

In[125]:= im Table If y 64, 0, 1 If y x && y 63, 2, 1 , y, 128 , x, 128 ;

DisplayTogetherArray ListDensityPlot im , ListContourPlot gD im, 0, 0, 7 ,

Contours 15, PlotRange 0.3, 2.8 , ImageSize 280 ;

The  isophote  structure  (right)  of  a  simple  idealized  and  observed  (blurred)  T-junction  (left)  shows  that  isophotes  strongly
bend at T-junctions when we walk through the intensity landscape.

It seems to make sense to study 
w

:

We recall that the isophote curvature  is defined as 
Lvv

Lw
:

In[127]:= ?gauge2D

gauge2D L x,y ,nv,nw calculates the Gaussian derivatives of

the function L x,y in the gauge coordinates v,w . v is the

direction tangential to the isophote, w is the gradient direction.

L x,y 2D input function

nv order of differentiation to v Integer, 0

nw order of differentiation to w Integer, 0

Example: gauge2D L x,y ,2,0 shortnotation

In[128]:=
gauge2D L x, y , 2, 0

gauge2D L x, y , 0, 1
; Simplify shortnotation

Out[128]//DisplayForm=

2 Lx Lxy Ly Lxx Ly
2 Lx

2 Lyy

Lx2 Ly2
3 2

The derivative of the isophote curvature in the direction of the gradient, 
w

 is quite a complex third order expression. The

formula is  derived by calculating the directional derivative  of  the curvature in the direction of the normalized gradient.  We
define the gradient (or nabla: ) operator with a pure function:

In[129]:= grad x#, y# &;

d dw
grad L x, y

grad L x, y .grad L x, y
.grad ;

d dw Simplify shortnotation
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Out[131]//DisplayForm=

1

Lx2 Ly2
3

Lxxy Ly
5 Lx

4 2 Lxy
2 Lx Lxyy Lxx Lyy Ly

4 2 Lxy
2 Lx Lxxx 2 Lxyy Lxx Lyy

Lx
2 Ly

2 3 Lxx
2 8 Lxy

2 Lx Lxxx Lxyy 4 Lxx Lyy 3 Lyy
2

Lx
3 Ly 6 Lxy Lxx Lyy Lx 2 Lxxy Lyyy
Lx Ly

3 6 Lxy Lxx Lyy Lx Lxxy Lyyy

To  avoid  singularities  at  vanishing  gradients  through  the  division  by Lx
2 Ly

2 3
Lw

6  we  use  as  our  T-junction  detector

w
Lw

6:

In[132]:= tjunction d dw grad L x, y .grad L x, y 3;

tjunction shortnotation

Out[133]//DisplayForm=

Lx
5 Lxyy Ly

4 2 Lxy
2 Lxxy Ly Lxx Lyy Lx

3 Ly 6 Lxx Lxy Lxxx Ly Lxyy Ly 6 Lxy Lyy

Lx Ly
3 6 Lxx Lxy Lxxx Ly 2 Lxyy Ly 6 Lxy Lyy Lx

4 2 Lxy
2 2 Lxxy Ly Lxx Lyy Ly Lyyy

Lx
2 Ly

2 3 Lxx
2 8 Lxy

2 Lxxy Ly 4 Lxx Lyy 3 Lyy
2 Ly Lyyy

Finally,  we  apply  the  T-junction  detector  on  our  blocks  at  a  rather  fine  scale  of 2  (we  plot tjunction  to  invert  the
contrast):

In[134]:= 2; ListDensityPlot

tjunction . Derivative nx_, ny_ L x, y gD im0, nx, ny, .

im0 blocks, Epilog circles, ImageSize 230 ;

Detection of T-junctions in the image of the blocks. The same circles have been drawn as in the figure above.

Example 3: Deblurring Gaussian Blur

In the scale-space the images gradually blur when we increase the scale.

The diffusion equation 
L

t

2 L

x2

2 L

y2
 governs the process.

A scale-space is infinitely differentiable due to the regularization properties of the observation process.
What  happens  if  we  go  to  negative  scales?  Due  to  the  continuity  we  are  allowed  to  construct  a Taylor  expansion  of  the
scale-space in any direction, including the negative scale direction:

In[135]:= L .;

Series L x, y, t , t, 0, 3
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Out[136]= L x, y, 0 L 0,0,1 x, y, 0 t
1
2
L 0,0,2 x, y, 0 t2

1
6
L 0,0,3 x, y, 0 t3 O t 4

The derivatives to t are recognized as e.g. L 0,0,1 . It is not possible to directly calculate the derivatives to t. We can replace the
derivative  of  the  image to  scale with  the  Laplacian of  the  image,  and that  can be computed by application  of  the  Gaussian
derivatives on the image. Higher orders derivatives to t have to be replaced with the repeated Laplacian operator .

In[137]:= : x,x # y,y # &

In[138]:= f x, y

Out[138]= 1 0.1 y Sin x 3 Sin 3 x

The repeated Laplacian operator is made with the function Nest:

In[139]:= Nest f, x, 3

Out[139]= f f f x

With pattern matching we replace all derivatives of L with respect to t with the nested Laplacian operator :

In[140]:= expr Normal Series L x, y, t , t, 0, 3 .

L 0,0,n_ x, y, 0 Nest , L x, y, 0 , n

Out[140]= L x, y, 0 t L 0,2,0 x, y, 0 L 2,0,0 x, y, 0
1
2
t2 L 0,4,0 x, y, 0 2 L 2,2,0 x, y, 0 L 4,0,0 x, y, 0

1
6
t3 L 0,6,0 x, y, 0 3 L 2,4,0 x, y, 0 3 L 4,2,0 x, y, 0 L 6,0,0 x, y, 0

In order to get the formulas better readable for humans, we apply pattern matching again: we change the complex notations of
derivatives into a more compact representation, where a higher order derivative is indicated by a list of dimensional indices:

In[141]:= short expr_ : expr . Derivative n_, m_, l_ L x_, y_, z_

SubscriptBox L, Table "x", n Table "y", m Table "z", l

DisplayForm

In[142]:= expr short

Out[142]//DisplayForm=

L x, y, 0 t Lxx Lyy
1
2
t2 Lxxxx 2 Lxxyy Lyyyy

1
6
t3 Lxxxxxx 3 Lxxxxyy 3 Lxxyyyy Lyyyyyy

Indeed,  high  order  of  spatial  derivatives  appear.  The  highest  order  in  this  example  is  6,  because  we  applied  the  Laplacian
operator  3  times,  which  itself  is  a  second  order  operator.  With Mathematica  we  now  have  the  machinery  to  make  Taylor
expansions to any order, e.g. to 8:

In[143]:= expr Normal Series L x, y, t , t, 0, 8 .

L 0,0,n_ x, y, 0 Nest , L x, y, 0 , n short
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Out[143]//DisplayForm=

L x, y, 0 t Lxx Lyy
1
2
t2 Lxxxx 2 Lxxyy Lyyyy

1
6
t3 Lxxxxxx 3 Lxxxxyy 3 Lxxyyyy Lyyyyyy

1
24

t4 Lxxxxxxxx 4 Lxxxxxxyy 6 Lxxxxyyyy 4 Lxxyyyyyy Lyyyyyyyy
1

120
t5

Lxxxxxxxxxx 5 Lxxxxxxxxyy 10 Lxxxxxxyyyy 10 Lxxxxyyyyyy 5 Lxxyyyyyyyy Lyyyyyyyyyy
1

720
t6 Lxxxxxxxxxxxx 6 Lxxxxxxxxxxyy 15 Lxxxxxxxxyyyy 20 Lxxxxxxyyyyyy

15 Lxxxxyyyyyyyy 6 Lxxyyyyyyyyyy Lyyyyyyyyyyyy
1

5040
t7 Lxxxxxxxxxxxxxx 7 Lxxxxxxxxxxxxyy 21 Lxxxxxxxxxxyyyy 35 Lxxxxxxxxyyyyyy

35 Lxxxxxxyyyyyyyy 21 Lxxxxyyyyyyyyyy 7 Lxxyyyyyyyyyyyy Lyyyyyyyyyyyyyy
1

40320
t8 Lxxxxxxxxxxxxxxxx 8 Lxxxxxxxxxxxxxxyy 28 Lxxxxxxxxxxxxyyyy

56 Lxxxxxxxxxxyyyyyy 70 Lxxxxxxxxyyyyyyyy 56 Lxxxxxxyyyyyyyyyy
28 Lxxxxyyyyyyyyyyyy 8 Lxxyyyyyyyyyyyyyy Lyyyyyyyyyyyyyyyy

No matter  how high  the  order  of  differentiation,  the  derivatives  can  be  calculated  using  the  multiscale  Gaussian  derivative
operators. So, as a final step, we express the spatial derivatives in the formula above in the Gaussian derivatives, again using
the technique of pattern matching (HoldForm assures we see just the formula for gD[], of which evaluation is ‘hold’; Release-
Hold removes the hold):

In[144]:= corr expr . Derivative n_, m_, 0 L x, y, a_ HoldForm gD im, n, m, 1

Out[144]//DisplayForm=

L x, y, 0 t Lxx Lyy
1
2
t2 Lxxxx 2 Lxxyy Lyyyy

1
6
t3 Lxxxxxx 3 Lxxxxyy 3 Lxxyyyy Lyyyyyy

1
24

t4 Lxxxxxxxx 4 Lxxxxxxyy 6 Lxxxxyyyy 4 Lxxyyyyyy Lyyyyyyyy
1

120
t5

Lxxxxxxxxxx 5 Lxxxxxxxxyy 10 Lxxxxxxyyyy 10 Lxxxxyyyyyy 5 Lxxyyyyyyyy Lyyyyyyyyyy
1

720
t6 Lxxxxxxxxxxxx 6 Lxxxxxxxxxxyy 15 Lxxxxxxxxyyyy 20 Lxxxxxxyyyyyy

15 Lxxxxyyyyyyyy 6 Lxxyyyyyyyyyy Lyyyyyyyyyyyy
1

5040
t7 Lxxxxxxxxxxxxxx 7 Lxxxxxxxxxxxxyy 21 Lxxxxxxxxxxyyyy 35 Lxxxxxxxxyyyyyy

35 Lxxxxxxyyyyyyyy 21 Lxxxxyyyyyyyyyy 7 Lxxyyyyyyyyyyyy Lyyyyyyyyyyyyyy
1

40320
t8 Lxxxxxxxxxxxxxxxx 8 Lxxxxxxxxxxxxxxyy 28 Lxxxxxxxxxxxxyyyy

56 Lxxxxxxxxxxyyyyyy 70 Lxxxxxxxxyyyyyyyy 56 Lxxxxxxyyyyyyyyyy
28 Lxxxxyyyyyyyyyyyy 8 Lxxyyyyyyyyyyyyyy Lyyyyyyyyyyyyyyyy

Because we deblur,  we take for t
1

2
2  a negative value,  given by the amount of  blurring estimated  we expect  we have to

deblur. However, applying Gaussian derivatives on our image increases the inner scale with the scale of the applied operator,
i.e.  blurs  it  a  little  necessarily.  So,  if  we  calculate  our  repeated  Laplacians  say  at  scale operator 4,  we  need  to  deblur  the

effect of both blurrings. Expressed in t, the total deblurring ‘distance’ amounts to tdeblur

2
estimated

2
operator

2
. We assemble

our commands in a single deblurring command which calculates the amount of correction to be added to an image to deblur it:

In[145]:= deblur[im_, est_, order_, _] :=  

 Module[{expr},     

=D[#1,{x,2}]+D[#1,{y,2}]&;   

 expr = Normal[Series[L[x, y, t], {t, 0, order}]]/.
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 Derivative[0, 0, l_][L_][x_, y_, t_] :>    

 Nest[ , L[x, y, t], l] /. t  -( est^2+ ^2)/2;   

 Drop[expr,1]/.Derivative[n_,m_,0][L][x,y,t_]

     
 HoldForm[gD[im,n,m, ]]]

and test it, e.g. for first order:

In[146]:= im .; deblur im, 2, 1, 2

Out[146]= 4 gD im, 0, 2, 2 gD im, 2, 0, 2

It  is  a  well  known  fact  in  image  processing  that  subtraction  of  the  Laplacian  (times  some constant  depending  on  the  blur)
sharpens the  image.  We see here that  this  is  nothing else than the first  order  result  of  our deblurring approach using scale-
space theory. For higher order deblurring the formulas get more complicated and higher derivatives are involved:

In[147]:= deblur im, 2, 3, 2

Out[147]= 4 gD im, 0, 2, 2 gD im, 2, 0, 2

8 gD im, 0, 4, 2 2 gD im, 2, 2, 2 gD im, 4, 0, 2
32
3

gD im, 0, 6, 2 3 gD im, 2, 4, 2 3 gD im, 4, 2, 2 gD im, 6, 0, 2

We generate a test image blurred with =2  pixels and display it both below as in a new window for later easy comparison.
We read an image from the internet:

In[148]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/images/mr128.gif"];

image = Import[imgFile,"GIF"];

DeleteFile[imgFile];

Show[image];

In[152]:= im image 1, 1 ; blur gDf im, 0, 0, 2 ;

ListDensityPlot blur, ImageSize 128 ;
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Figure 19. Input image for deblurring, blurred at  = 2 pixels. Image resolution 1282.

We try a deblurring for orders 4, 8, 16 and 32:

In[154]:= Timing Do

corr deblur blur, 2, 2i, 4 ReleaseHold;

Block $DisplayFunction Identity ,

p1 ListDensityPlot blur, PlotLabel "original" ;

p2

ListDensityPlot blur corr, PlotLabel "order " ToString 2i ;

Show GraphicsArray p1, p2 , ImageSize 330 ;,

i, 2, 5 ; 1

original order 4

original order 8
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original order 16

original order 32

Out[154]= 68.625 Second

Result of deblurring to 32nd order.
Not bad.
Mathematica is reasonably fast: the deblurring to 32nd order involved derivatives up to order 64 (!), in a polynomial contain-
ing 560 calls to the gD derivative function. The 4 calculations above take together about 4.5 minutes for a 1282  image on a
500 MHz 128 MB Pentium III under Windows 98 (the 32nd  order case took 3.5 minutes). This counts the occurrences of gD
in the 32nd order deblur polynomial, i.e. how many actual convolutions of the image were needed:

In[155]:= dummy .; Length Position deblur dummy, 2, 32, 4 , gD

Out[155]= 560

Example 4: Detection of Granular Structures in 3D Macrophages

Initialization

Use the initialization of example 1.
Read the TIFF file with the 50 slices from the author’s homepage’s image directory (NB: 12.8 MB):

In[156]:= imgFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/images/29-4-2004-2_raw02.tif"];

im = Import[imgFile,"TIFF"];

DeleteFile[imgFile];

Take from all 50 slices the pixels (in the [[1,1]] element), and take the green channel only of the color RGB images (the other
channels are zero):
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In[159]:= tmp im All, 1, 1 ;

Dimensions im3D tmp All, All, All, 2

Out[160]= 50, 512, 512

50, 512, 512

Take a submatrix with the macrophage in each of the 50 images:

In[161]:= imn Take im3D, All, 211, 320 , 286, 417 ;

max, min Max imn , Min imn ;

zdim, ydim, xdim Dimensions imn

Out[163]= 50, 110, 132

50, 110, 132

The z-scale is multiplied by  to include the anisotropy of the voxels:

In[164]:= 1;

Check the slices:

In[165]:= Show GraphicsArray Partition ListDensityPlot #,

DisplayFunction Identity, PlotRange min, max & imn, 7 ,

DisplayFunction $DisplayFunction, ImageSize 600 ;
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3D Viewer

In[166]:= Get "MathGL3d`OpenGLViewer`" ;

The OpenGLViewer is running.

LinkObject::linkd :

LinkObject C:\Documents and Settings\All Users\Applicat

… L3d\Binaries\Windows\mathview3d.exe mathlink, 158, 6

is closed; the connection is dead. More…

This shows the outline (isosurface of value 100) of the macrophage in 3D in a separate window:

In[167]:= MVClear ;

g MVListContourPlot3D gDn imn, 0, 0, 0 , 1, 1, 1 ,

Contours 100 , LightSources 1, 0, 1 , RGBColor .6, .6, .6 ,

1, 0, 1 , RGBColor .6, .6, .6 , 0, 0, 1 , RGBColor .6, .6, .6 ,

ContourStyle Banana , DisplayFunction Identity,

MVReducePolygons 0, Automatic ;

LinkObject::linkn :

Argument LinkObject C:\Documents and Settings\All Users\Applicat

… L3d\Binaries\Windows\mathview3d.exe mathlink, 158, 6 in

LinkWrite LinkObject C:\Documents and Settings\All Users\A …

aries\Windows\mathview3d.exe mathlink, 158, 6 , 1

has an invalid LinkObject number; the link may be dead. More…
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LinkObject::linkn :

Argument LinkObject C:\Documents and Settings\All Users\Applicat

… L3d\Binaries\Windows\mathview3d.exe mathlink, 158, 6 in

LinkWrite LinkObject C:\Documents and Settings\All Users\A …

aries\Windows\mathview3d.exe mathlink, 158, 6 , 1

has an invalid LinkObject number; the link may be dead. More…

And this is the wireframe:

In[169]:= wireframe Show WireFrame g ,

DisplayFunction $DisplayFunction, ImageSize 550, BoxRatios 1, 1, 1 ;

Blur the 3D data a little with 3 pixels in the x, y and z dimension:

In[170]:= ?gDn

gDn im, ...,ny,nx , ..., y, x ,optio ns calculates the Gaussian

derivative of an N dimensional image by approximated spatial

convolution. It is optimized for speed by 1D convolutions per

dimension. The image is considered cyclic in each direction.

Note the order of the dimensions in the parameter lists.

im N dimensional input image List

nx order of differentiation to x Integer, nx 0

x scale in x dimension in pixels, 0

options optional kernelSampleRange: range of kernel

sampled in multiples of . Default: kernelSampleRange 6,6

Example: gDn im, 0,0,1 , 2,2,2 calculates the x

derivative of a 3D image at an isotropic scale of z y x 2.

In[171]:= imnblurred gDn imn, 0, 0, 0 , 3, 3, 3 ;

Find the n largest maxima in N-dimensions:

In[172]:= nMaxima im_, n_ : Module l, d Depth im 1 ,

p Times Table Sign im Map RotateLeft, im, i 1

Sign im Map RotateRight, im, i 1 , i, 0, d 1 ;

l Length Position p, 4d ;

Take

Reverse Union Extract im, # , # & Position p, 4d , If n l, n, l ;

We return the 3D positions of the 12 largest maxima:

In[173]:= maximumpositions Last # & nMaxima imnblurred, 12

Out[173]= 24, 52, 89 , 23, 51, 89 , 24, 57, 37 , 20, 39, 61 ,

18, 64, 70 , 24, 72, 60 , 24, 49, 113 , 21, 23, 44 ,

25, 50, 114 , 18, 28, 86 , 22, 28, 37 , 21, 36, 103

24, 52, 89 , 23, 51, 89 , 24, 57, 37 , 20, 39, 61 ,

18, 64, 70 , 24, 72, 60 , 24, 49, 113 , 21, 23, 44 ,

25, 50, 114 , 18, 28, 86 , 22, 28, 37 , 21, 36, 103
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In[174]:= Show GraphicsArray

Partition ListDensityPlot imn First # , PlotRange min, max ,

PlotLabel "slice " ToString # 1 , DisplayFunction Identity,

Epilog Red, PointSize 0.03 , Point Reverse Drop #, 1 &

maximumpositions, 6 , DisplayFunction $DisplayFunction,

ImageSize 600, GraphicsSpacing .1 ;

slice 24 slice 21 slice 25 slice 18 slice 22 slice 21

slice 24 slice 23 slice 24 slice 20 slice 18 slice 24

Granulae Shape Detection

We sample  the  intensity  along a  star  of  rays in  each granule,  starting at  the location of  its  maximum value.  We interpolate
with a cubic spline (3rd order) function:

In[175]:= interpolation ListInterpolation imn ;

Create a star of rays with each 20 sampling points 1 pixel apart starting from the maximum position x, y, z  in 7 directions of
 (tils) and 5 directions of  (slant), in total 35 directions:

In[176]:= 8; 2 5;

rays z_, y_, x_ : Module , , r , Table N

interpolation z r Cos Cos , y r Sin Cos , x r Sin ,

, 2 , 2 , , , 0, 2 Pi , , r, 1, 20 ;

Just to check the result visually, we display the star of sampling rays:

In[178]:= star z_, y_, x_ : Module , , r ,

Graphics3D Red, Point x, y, z , Table Wheat, Line x, y, z ,

N x r Cos Cos , y r Sin Cos , z r Sin , Blue,

Point N x r Cos Cos , y r Sin Cos , z r Sin ,

, 2 , 2 , , , 0, 2 , , r, 20, 20 ;

stars Show Apply star, maximumpositions, 2 ;
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We sample the intensity tracks along the 35 rays outbound from the 8 maxima, and inspect them lined up in a single figure:

In[180]:= Off InterpolatingFunction::"dmval" ;

In[181]:= DisplayTogetherArray ListDensityPlot #, PlotRange min, max &

tracks Flatten rays #, 1 & maximumpositions , ImageSize 600 ;

In[182]:= Dimensions tracks

Out[182]= 12, 35, 20

12, 35, 20

Here are the tracks per granule:

In[183]:= DisplayTogetherArray

MultipleListPlot #, PlotRange min, max , SymbolShape None, Axes False,

PlotStyle Hue Range 0, 1, 1 15 & tracks, ImageSize 600 ;

The  edges  are  very  weak,  in  a  very  noisy  environment.  Therefore  we  will  use  the  signature  function  and edge  focusing  to
detect the location of the largest edge in the track.

Signatures

The signature function is calculated in the Fourier domain to prevent accuracy errors at larger scales.

In[184]:= Clear signature ;

signature track_ : Module ss ,

ss Table gDf1D track, 2, E , , 0, 2, .06 ;

RotateRight # # & Sign ss ;
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Calculate the 20-pixel signatures for 34 levels of scale for all 35 tracks around all 8 maxima with convolution in the Fourier
domain:

In[186]:= signatures Map signature, tracks, 2 ;

Dimensions signatures

Out[187]= 12, 35, 34, 20

Display all signature functions with a level line at 17:

In[188]:= level 17;

DisplayTogetherArray

ListDensityPlot #, Epilog Red, Line 0, level , 20, level & #,

ImageSize 600 & signatures;

Edge Focusing

The function edgefocus takes a signature and a startlevel, and a direction (upgoing edge: dir= 2, downgoing edge: dir = -2).

In[190]:= edgefocus signature_, startlevel_, dir_ : Module a, b, c ,

out 0. signature; a Position signature startlevel , dir ;

Do b Position signature i , dir ;

c Select b, Position a, # 1

Position a, # Position a, # 1 & ;
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out i ReplacePart out i , 1, c ; b c; a b,

i, startlevel 1, 1, 1 ;

Position First out , 1 1, 1 ;

In[191]:= edgelocations Map edgefocus #, 17, 2 &, signatures, 2

Out[191]= 11, 14, 7, 11, 13, 9, 13, 9, 11, 14, 8, 13, 6, 10, 10, 8, 17,

6, 16, 9, 8, 12, 10, 13, 12, 10, 9, 13, 13, 9, 10, 10, 10, 9, 8 ,

12, 12, 9, 10, 7, 9, 16, 9, 10, 14, 8, 13, 7, 8, 10, 8, 17, 7, 15,

11, 8, 13, 10, 12, 11, 10, 12, 13, 13, 12, 13, 12, 13, 4, 8 ,

9, 13, 8, 8, 7, 7, 14, 6, 13, 9, 7, 15, 9, 11, 10, 7, 9, 9,

12, 12, 11, 9, 11, 11, 8, 6, 7, 6, 5, 6, 6, 9, 5, 4, 5 ,

17, 8, 10, 9, 9, 9, 7, 5, 13, 8, 7, 8, 11, 11, 6, 8, 10, 13,

12, 9, 8, 14, 13, 12, 6, 8, 11, 11, 15, 7, 7, 6, 8, 9, 11 ,

6, 5, 13, 7, 11, 13, 7, 7, 8, 13, 5, 7, 6, 9, 4, 5, 7, 6, 8, 3, 5, 6, 7, 8,

5, 5, 13, 10, 14, 1, 6, 8, 9, 8, 7 , 7, 9, 8, 6, 7, 4, 11, 8, 17, 6, 4, 13,

7, 15, 4, 4, 16, 9, 16, 8, 7, 8, 10, 8, 7, 9, 8, 4, 18, 6, 9, 6, 3, 6, 7 ,

7, 1, 1, 8, 5, 5, 11, 4, 10, 5, 6, 7, 7, 7, 14, 7, 7, 13,

12, 10, 8, 8, 10, 10, 7, 9, 10, 5, 5, 5, 8, 8, 5, 6, 7 ,

7, 7, 15, 9, 8, 5, 7, 11, 8, 4, 12, 6, 6, 6, 9, 6, 4, 6, 7, 9, 5, 4, 15, 6,

9, 15, 5, 7, 8, 11, 5, 5, 4, 4, 13 , 6, 2, 1, 2, 7, 5, 10, 4, 13, 7, 5, 7,

3, 17, 7, 5, 7, 13, 12, 8, 8, 7, 11, 5, 8, 7, 10, 6, 6, 6, 7, 7, 5, 5, 5 ,

6, 8, 9, 4, 5, 5, 6, 13, 11, 8, 14, 9, 12, 9, 6, 10, 1, 9, 7,

5, 10, 4, 11, 7, 6, 10, 6, 12, 8, 7, 13, 3, 6, 11, 9 ,

12, 8, 7, 8, 10, 7, 5, 8, 8, 10, 7, 4, 6, 10, 8, 13, 3, 6, 7,

10, 5, 3, 6, 12, 12, 5, 2, 3, 13, 15, 10, 3, 3, 7, 4 ,

3, 1, 1, 1, 1, 3, 1, 18, 4, 5, 13, 1, 3, 12, 8, 11, 5, 15,

10, 5, 7, 18, 13, 9, 5, 8, 1, 13, 7, 4, 10, 9, 15, 5, 5

Let us visually check the correctness of the detected edges in the noise:

In[192]:= DisplayTogetherArray Table ListDensityPlot tracks i ,

Epilog Red, PointSize 0.04 , MapIndexed Point #1, #2 1 .5 &,

edgelocations i , i, 1, 8 , ImageSize 600 ;

In[193]:= r .

pr z_, y_, x_ :

Flatten Table N x r Cos Cos , y r Sin Cos , z r Sin ,

, 2 , 2 , , , 0, 2 , , 1 ;

In[195]:= edgepoints3D

MapThread #1 . r #2 &, pr maximumpositions, edgelocations , 2 ;
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In[196]:= Show Graphics3D MapThread List, Hue
Range Length edgepoints3D

Length edgepoints3D
,

Map Point, edgepoints3D, 2 ;

Fit Spherical Harmonic Functions to Second Order

In[197]:= order 2;

fitfunctions

Flatten Table SphericalHarmonicY l, m, , , l, 0, order , m, l, l, 1

Out[198]=
1

2
,

1
2

3
2

Sin ,
1
2

3
Cos ,

1
2

3
2

Sin ,

1
4

2 15
2

Sin 2,
1
2

15
2

Cos Sin ,

1
4

5
1 3 Cos 2 ,

1
2

15
2

Cos Sin ,
1
4

2 15
2

Sin 2

In[199]:= fitresults Chop ExpToTrig Fit #, fitfunctions, , & edgepoints3D

Out[199]= 24.5375 1.36246 Cos 0.346201 Cos 2

0.371463 Cos Sin 1.34494 Cos Cos Sin

0.998947 Cos 2 Sin 2 0.162299 Sin Sin

4.52912 Cos Sin Sin 1.16299 Sin 2 Sin 2 ,

19.0396 1.70754 Cos 10.9077 Cos 2 0.516394 Cos Sin

6.48349 Cos Cos Sin 5.37368 Cos 2 Sin 2

3.1673 Sin Sin 1.76275 Cos Sin Sin 2.59704 Sin 2 Sin 2 ,

21.8964 1.19997 Cos 1.99265 Cos 2 0.800959 Cos Sin

0.859479 Cos Cos Sin 2.82458 Cos 2 Sin 2

1.03126 Sin Sin 4.91885 Cos Sin Sin 3.62613 Sin 2 Sin 2 ,

21.1501 0.873112 Cos 2.52097 Cos 2 0.47186 Cos Sin

7.48707 Cos Cos Sin 0.323233 Cos 2 Sin 2

4.93223 Sin Sin 4.44066 Cos Sin Sin 4.29129 Sin 2 Sin 2 ,

22.2647 0.269869 Cos 8.27813 Cos 2
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3.40177 Cos Sin 3.74178 Cos Cos Sin

1.31886 Cos 2 Sin 2 0.444734 Sin Sin

5.44111 Cos Sin Sin 0.624648 Sin 2 Sin 2 ,

24.3495 2.0098 Cos 0.337587 Cos 2 2.70311 Cos Sin

1.30374 Cos Cos Sin 0.75009 Cos 2 Sin 2

0.160252 Sin Sin 5.75551 Cos Sin Sin

1.37843 Sin 2 Sin 2 , 25.4283 0.438578 Cos 2.15445 Cos 2

0.316226 Cos Sin 0.431729 Cos Cos Sin

0.464945 Cos 2 Sin 2 0.478331 Sin Sin

0.643766 Cos Sin Sin 0.327531 Sin 2 Sin 2 ,

24.6763 0.00750891 Cos 7.07093 Cos 2 2.09091 Cos Sin

4.2939 Cos Cos Sin 2.98321 Cos 2 Sin 2 4.34821 Sin Sin

8.54925 Cos Sin Sin 2.83875 Sin 2 Sin 2 ,

26.5489 0.656594 Cos 1.99621 Cos 2 1.01398 Cos Sin

0.837318 Cos Cos Sin 3.41477 Cos 2 Sin 2

1.12681 Sin Sin 4.22902 Cos Sin Sin 3.06597 Sin 2 Sin 2 ,

16.9595 0.172721 Cos 1.63283 Cos 2

0.248931 Cos Sin 3.33861 Cos Cos Sin

2.64507 Cos 2 Sin 2 0.642694 Sin Sin

8.11311 Cos Sin Sin 2.34011 Sin 2 Sin 2 ,

29.0653 1.16871 Cos 6.70905 Cos 2 5.18537 Cos Sin

3.70162 Cos Cos Sin 4.78784 Cos 2 Sin 2

7.12255 Sin Sin 10.9624 Cos Sin Sin 10.7787 Sin 2 Sin 2 ,

20.8489 0.389885 Cos 0.901003 Cos 2 1.12934 Cos Sin

5.26629 Cos Cos Sin 1.44079 Cos 2 Sin 2

1.57621 Sin Sin 1.75637 Cos Sin Sin 2.4043 Sin 2 Sin 2

In[200]:= Off ParametricPlot3D::"ppcom" ;

granulae Show MapThread ParametricPlot3D Reverse

#1 , 1, 1 .15 #2 Cos , Sin Cos , Sin Sin , , 0, ,

, 0, 2 , DisplayFunction Identity &, maximumpositions,

fitresults . Polygon q_ EdgeForm , Polygon q ,

DisplayFunction $DisplayFunction, ImageSize 250,

AxesLabel "z", "y", "x" , Lighting True ;
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Show the granules in a separate Java viewer window to play with the 3D dataset interactively:
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JLink`;

InstallJava ;

liveApplet JavaNew "Live" ;

liveFrame JavaNew "com.wolfram.jlink.MathAppletFrame",

liveApplet, "INPUT " ToString InputForm N granulae ,

"WIDTH 800", "HEIGHT 800" ;

liveFormWrite "c: tmp Lysosomes.dat", granulae ;
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Example 5: Eigenpatches

Gaussian Derivatives and Eigen-images

It has been shown that the so-called Eigen-images of a large series of image small patches

have great similarity to partial Gaussian derivative functions [Olshausen1996, Olshausen1997]. The resulting images are also
often modeled as Gabor patches and wavelets. 

In[201]:= imageFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/images/mr256.gif"];

im = Import[imageFile,"GIF"] 1,1 ;

DeleteFile[imageFile];

In[204]:= 12;

ListDensityPlot im, Epilog

Gray, Table Line i, j , i , j , i , j , i, j , i, j ,

j, 2, 256, 15 , i, 2, 256, 15 , ImageSize 300 ;
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Figure 21. Location of the 289 small 12 12 pixel patches taken from a 2562 image of a
forest scene.

The small 12 12 images are sampled with SubMatrix:

In[206]:= set Table SubMatrix im, j, i , , , j, 2, 256, 15 , i, 2, 256, 15 ;

Dimensions set

Out[206]= 17, 17, 12, 12

and converted into a matrix m with 289 rows of length 144. We multiply each small image with a Gaussian weighting func-
tion to simulate the process of observation, and subtract the global mean:

In[207]:= 4; g Table Exp
x2 y2

2 2
, x, 5.5, 5.5 , y, 5.5, 5.5 ;

set2 Map g # &, set, 2 ;

m Flatten Map Flatten, set2, 2 , 1 ; mean
Plus #

Length #
&;

m N m mean Flatten m ; Dimensions m

Out[210]= 289, 144

We calculate mT m, a 1442 matrix with the Dot product, and check that it is a square matrix:

In[211]:= Dimensions mTm N Transpose m .m

Out[211]= 144, 144

The calculation of the 144 Eigen-values of a 1442 matrix goes fast in Mathematica. Essential is to force the calculations to be
done numerically with the function N[]. Because mTm is a symmetric matrix, built from two 289 144 size matrices, we have
144 (nonzero) Eigen-values:

In[212]:= Short Timing evs eigenvalues Eigenvalues mTm , 5

Out[212]//Short=

0.109 Second, 2.94085 107, 8.22104 106, 3.41456 106, 2.04713 106,

866307., 774802., 133 , 12.4795, 10.693, 9.79994, 8.49766, 6.89998

We  calculate  the Eigenvectors  of  the  matrix mTm  and  construct  the  first  Eigen-image  by  partitioning  the  resulting 144 1
vector 12 rows. All Eigen-vectors normalized: unity length. 

In[213]:= eigenvectors Eigenvectors mTm ;

eigenimages Table Partition eigenvectors i , , i, 1, 8 ;

DisplayTogetherArray ListDensityPlot eigenimages, ImageSize 350 ;

DisplayTogetherArray ListPlot3D eigenimages, ImageSize 350 ;
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Figure 12.22. The first 8 Eigen-images of the 289 patches from figure 12.10.

In[216]:= noise Table Random , 256 , 256 ; 12;

set Table SubMatrix noise, j, i , , , j, 3, 256, 15 , i, 3, 256, 15 ;

m Flatten Map Flatten, set, 2 , 1 ;

m N m mean Flatten m ; mTm N Transpose m .m ;

eigenvaluesn, eigenvectorsn Eigensystem mTm ;

eigenimagesn Table Partition eigenvectorsn i , , i, 1, 8 ;

DisplayTogetherArray ListDensityPlot eigenimagesn, ImageSize 350 ;

Figure 12.23. The first 8 Eigen-images of 289 patches of 12 12 pixels of white noise. Note that 
none of the Eigen-images contains any structure.

Note that the distribution of the Eigen-values for noise are much different from those of a structured image. They are much
smaller, and the first ones are markedly less pronounced. Here we plot both distributions:

In[223]:= DisplayTogether

LogListPlot evs, PlotJoined True, PlotRange .1, Automatic ,

LogListPlot eigenvaluesn, PlotJoined True , ImageSize 250 ;
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Figure 12.24. Nonzero Eigen-values for a structured image (upper) and white noise (lower).

When  we  extract 49 49 2401  small  images  of 12 12  pixels  at  each  5  pixels,  so  they  slightly  overlap,  we  get  better
statistics.
A striking  result  is  obtained  when the  image  contains  primarily  vertical  structures,  like  trees.  We then obtain  Eigenpatches
resembling the horizontal high order Gaussian derivatives / Gabor patches (see figure 12.25).

In[224]:= imageFile = GetURL["http://www.bmi2.bmt.tue.nl/image-analysis/People/-

BRomeny/FEV/images/forest02.gif"];

im = Import[imageFile,"GIF"] 1,1 ;

DeleteFile[imageFile];

In[227]:= 12;

set Table SubMatrix im, j, i , , , j, 2, 246, 5 , i, 2, 246, 5 ;

1 2; ; g Table N Exp
x2 y2

2 2
, x, , , y, , ;

set2 Map g # &, set, 2 ;

m Flatten Map Flatten, set2, 2 , 1 ; mean
Plus #

Length #
&;
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m N m mean Flatten m ; mTm N Transpose m .m ;

eigenvectors Eigenvectors mTm ;

eigenimages Table Partition eigenvectors i , , i, 1, 25 ;

In[232]:= Block $DisplayFunction Identity , p1 ListDensityPlot im ;

p2 Show GraphicsArray Partition ListDensityPlot eigenimages, 5 ;

Show GraphicsArray p1, p2 , ImageSize 350 ;

Eigen-images for 2401 slightly overlapping patches of 12 12 pixels from the image of the vertical trees. Note that the first
Eigenpatches resemble the high order horizontal derivatives.
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